dump1090/demod_2400.c

441 lines
17 KiB
C

// Part of dump1090, a Mode S message decoder for RTLSDR devices.
//
// demod_2400.c: 2.4MHz Mode S demodulator.
//
// Copyright (c) 2014,2015 Oliver Jowett <oliver@mutability.co.uk>
//
// This file is free software: you may copy, redistribute and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation, either version 2 of the License, or (at your
// option) any later version.
//
// This file is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "dump1090.h"
// 2.4MHz sampling rate version
//
// When sampling at 2.4MHz we have exactly 6 samples per 5 symbols.
// Each symbol is 500ns wide, each sample is 416.7ns wide
//
// We maintain a phase offset that is expressed in units of 1/5 of a sample i.e. 1/6 of a symbol, 83.333ns
// Each symbol we process advances the phase offset by 6 i.e. 6/5 of a sample, 500ns
//
// The correlation functions below correlate a 1-0 pair of symbols (i.e. manchester encoded 1 bit)
// starting at the given sample, and assuming that the symbol starts at a fixed 0-5 phase offset within
// m[0]. They return a correlation value, generally interpreted as >0 = 1 bit, <0 = 0 bit
// TODO check if there are better (or more balanced) correlation functions to use here
// nb: the correlation functions sum to zero, so we do not need to adjust for the DC offset in the input signal
// (adding any constant value to all of m[0..3] does not change the result)
static inline int slice_phase0(uint16_t *m) {
return 5 * m[0] - 3 * m[1] - 2 * m[2];
}
static inline int slice_phase1(uint16_t *m) {
return 4 * m[0] - m[1] - 3 * m[2];
}
static inline int slice_phase2(uint16_t *m) {
return 3 * m[0] + m[1] - 4 * m[2];
}
static inline int slice_phase3(uint16_t *m) {
return 2 * m[0] + 3 * m[1] - 5 * m[2];
}
static inline int slice_phase4(uint16_t *m) {
return m[0] + 5 * m[1] - 5 * m[2] - m[3];
}
static inline int correlate_phase0(uint16_t *m) {
return slice_phase0(m) * 26;
}
static inline int correlate_phase1(uint16_t *m) {
return slice_phase1(m) * 38;
}
static inline int correlate_phase2(uint16_t *m) {
return slice_phase2(m) * 38;
}
static inline int correlate_phase3(uint16_t *m) {
return slice_phase3(m) * 26;
}
static inline int correlate_phase4(uint16_t *m) {
return slice_phase4(m) * 19;
}
//
// These functions work out the correlation quality for the 10 symbols (5 bits) starting at m[0] + given phase offset.
// This is used to find the right phase offset to use for decoding.
//
static inline int correlate_check_0(uint16_t *m) {
return
abs(correlate_phase0(&m[0])) +
abs(correlate_phase2(&m[2])) +
abs(correlate_phase4(&m[4])) +
abs(correlate_phase1(&m[7])) +
abs(correlate_phase3(&m[9]));
}
static inline int correlate_check_1(uint16_t *m) {
return
abs(correlate_phase1(&m[0])) +
abs(correlate_phase3(&m[2])) +
abs(correlate_phase0(&m[5])) +
abs(correlate_phase2(&m[7])) +
abs(correlate_phase4(&m[9]));
}
static inline int correlate_check_2(uint16_t *m) {
return
abs(correlate_phase2(&m[0])) +
abs(correlate_phase4(&m[2])) +
abs(correlate_phase1(&m[5])) +
abs(correlate_phase3(&m[7])) +
abs(correlate_phase0(&m[10]));
}
static inline int correlate_check_3(uint16_t *m) {
return
abs(correlate_phase3(&m[0])) +
abs(correlate_phase0(&m[3])) +
abs(correlate_phase2(&m[5])) +
abs(correlate_phase4(&m[7])) +
abs(correlate_phase1(&m[10]));
}
static inline int correlate_check_4(uint16_t *m) {
return
abs(correlate_phase4(&m[0])) +
abs(correlate_phase1(&m[3])) +
abs(correlate_phase3(&m[5])) +
abs(correlate_phase0(&m[8])) +
abs(correlate_phase2(&m[10]));
}
// Work out the best phase offset to use for the given message.
static int best_phase(uint16_t *m) {
int test;
int best = -1;
int bestval = (m[0] + m[1] + m[2] + m[3] + m[4] + m[5]); // minimum correlation quality we will accept
// empirical testing suggests that 4..8 is the best range to test for here
// (testing a wider range runs the danger of picking the wrong phase for
// a message that would otherwise be successfully decoded - the correlation
// functions can match well with a one symbol / half bit offset)
// this is consistent with the peak detection which should produce
// the first data symbol with phase offset 4..8
test = correlate_check_4(&m[0]);
if (test > bestval) { bestval = test; best = 4; }
test = correlate_check_0(&m[1]);
if (test > bestval) { bestval = test; best = 5; }
test = correlate_check_1(&m[1]);
if (test > bestval) { bestval = test; best = 6; }
test = correlate_check_2(&m[1]);
if (test > bestval) { bestval = test; best = 7; }
test = correlate_check_3(&m[1]);
if (test > bestval) { bestval = test; best = 8; }
return best;
}
//
// Given 'mlen' magnitude samples in 'm', sampled at 2.4MHz,
// try to demodulate some Mode S messages.
//
void demodulate2400(uint16_t *m, uint32_t mlen) {
struct modesMessage mm;
unsigned char msg1[MODES_LONG_MSG_BYTES], msg2[MODES_LONG_MSG_BYTES], *msg;
uint32_t j;
unsigned char *bestmsg;
int bestscore, bestphase, bestsnr;
memset(&mm, 0, sizeof(mm));
msg = msg1;
for (j = 0; j < mlen; j++) {
uint16_t *preamble = &m[j];
int high;
uint32_t base_signal, base_noise;
int initial_phase, first_phase, last_phase, try_phase;
int msglen;
// Look for a message starting at around sample 0 with phase offset 3..7
// Ideal sample values for preambles with different phase
// Xn is the first data symbol with phase offset N
//
// sample#: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
// phase 3: 2/4\0/5\1 0 0 0 0/5\1/3 3\0 0 0 0 0 0 X4
// phase 4: 1/5\0/4\2 0 0 0 0/4\2 2/4\0 0 0 0 0 0 0 X0
// phase 5: 0/5\1/3 3\0 0 0 0/3 3\1/5\0 0 0 0 0 0 0 X1
// phase 6: 0/4\2 2/4\0 0 0 0 2/4\0/5\1 0 0 0 0 0 0 X2
// phase 7: 0/3 3\1/5\0 0 0 0 1/5\0/4\2 0 0 0 0 0 0 X3
//
// quick check: we must have a rising edge 0->1 and a falling edge 12->13
if (! (preamble[0] < preamble[1] && preamble[12] > preamble[13]) )
continue;
if (preamble[1] > preamble[2] && // 1
preamble[2] < preamble[3] && preamble[3] > preamble[4] && // 3
preamble[8] < preamble[9] && preamble[9] > preamble[10] && // 9
preamble[10] < preamble[11]) { // 11-12
// peaks at 1,3,9,11-12: phase 3
high = (preamble[1] + preamble[3] + preamble[9] + preamble[11] + preamble[12]) / 4;
base_signal = preamble[1] + preamble[3] + preamble[9];
base_noise = preamble[5] + preamble[6] + preamble[7];
} else if (preamble[1] > preamble[2] && // 1
preamble[2] < preamble[3] && preamble[3] > preamble[4] && // 3
preamble[8] < preamble[9] && preamble[9] > preamble[10] && // 9
preamble[11] < preamble[12]) { // 12
// peaks at 1,3,9,12: phase 4
high = (preamble[1] + preamble[3] + preamble[9] + preamble[12]) / 4;
base_signal = preamble[1] + preamble[3] + preamble[9] + preamble[12];
base_noise = preamble[5] + preamble[6] + preamble[7] + preamble[8];
} else if (preamble[1] > preamble[2] && // 1
preamble[2] < preamble[3] && preamble[4] > preamble[5] && // 3-4
preamble[8] < preamble[9] && preamble[10] > preamble[11] && // 9-10
preamble[11] < preamble[12]) { // 12
// peaks at 1,3-4,9-10,12: phase 5
high = (preamble[1] + preamble[3] + preamble[4] + preamble[9] + preamble[10] + preamble[12]) / 4;
base_signal = preamble[1] + preamble[12];
base_noise = preamble[6] + preamble[7];
} else if (preamble[1] > preamble[2] && // 1
preamble[3] < preamble[4] && preamble[4] > preamble[5] && // 4
preamble[9] < preamble[10] && preamble[10] > preamble[11] && // 10
preamble[11] < preamble[12]) { // 12
// peaks at 1,4,10,12: phase 6
high = (preamble[1] + preamble[4] + preamble[10] + preamble[12]) / 4;
base_signal = preamble[1] + preamble[4] + preamble[10] + preamble[12];
base_noise = preamble[5] + preamble[6] + preamble[7] + preamble[8];
} else if (preamble[2] > preamble[3] && // 1-2
preamble[3] < preamble[4] && preamble[4] > preamble[5] && // 4
preamble[9] < preamble[10] && preamble[10] > preamble[11] && // 10
preamble[11] < preamble[12]) { // 12
// peaks at 1-2,4,10,12: phase 7
high = (preamble[1] + preamble[2] + preamble[4] + preamble[10] + preamble[12]) / 4;
base_signal = preamble[4] + preamble[10] + preamble[12];
base_noise = preamble[6] + preamble[7] + preamble[8];
} else {
// no suitable peaks
continue;
}
// Check for enough signal
if (base_signal * 2 < 3 * base_noise) // about 3.5dB SNR
continue;
// Check that the "quiet" bits 6,7,15,16,17 are actually quiet
if (preamble[5] >= high ||
preamble[6] >= high ||
preamble[7] >= high ||
preamble[8] >= high ||
preamble[14] >= high ||
preamble[15] >= high ||
preamble[16] >= high ||
preamble[17] >= high ||
preamble[18] >= high) {
++Modes.stats_current.preamble_not_quiet;
continue;
}
if (Modes.phase_enhance) {
first_phase = 4;
last_phase = 8; // try all phases
} else {
// Crosscorrelate against the first few bits to find a likely phase offset
initial_phase = best_phase(&preamble[19]);
if (initial_phase < 0) {
++Modes.stats_current.preamble_no_correlation;
continue; // nothing satisfactory
}
Modes.stats_current.preamble_phase[initial_phase%MODES_MAX_PHASE_STATS]++;
first_phase = last_phase = initial_phase; // try only the phase we think it is
}
Modes.stats_current.valid_preamble++;
bestmsg = NULL; bestscore = -1; bestphase = -1; bestsnr = -1;
for (try_phase = first_phase; try_phase <= last_phase; ++try_phase) {
int sigLevel = base_signal, noiseLevel = base_noise;
uint8_t theByte;
uint16_t *pPtr;
unsigned char *pMsg;
int phase, errors, i, snr, score;
// Decode all the next 112 bits, regardless of the actual message
// size. We'll check the actual message type later
pMsg = &msg[0];
pPtr = &m[j+19] + (try_phase/5);
phase = try_phase % 5;
theByte = 0;
errors = 0;
for (i = 0; i < MODES_LONG_MSG_BITS && errors < MODES_MSG_ENCODER_ERRS; i++) {
int test;
switch (phase) {
case 0:
test = slice_phase0(pPtr);
phase = 2;
pPtr += 2;
break;
case 1:
test = slice_phase1(pPtr);
phase = 3;
pPtr += 2;
break;
case 2:
test = slice_phase2(pPtr);
phase = 4;
pPtr += 2;
break;
case 3:
test = slice_phase3(pPtr);
phase = 0;
pPtr += 3;
break;
case 4:
test = slice_phase4(pPtr);
// A phase-4 bit exactly straddles a sample boundary.
// Here's what a 1-0 bit with phase 4 looks like:
//
// |SYM 1|
// xxx| | |xxx
// |SYM 2|
//
// 012340123401234012340 <-- sample phase
// | 0 | 1 | 2 | 3 | <-- sample boundaries
//
// Samples 1 and 2 only have power from symbols 1 and 2.
// So we can use this to extract signal/noise values
// as one of the two symbols is high (signal) and the
// other is low (noise)
//
// This also gives us an equal number of signal and noise
// samples, which is convenient. Using the first half of
// a phase 0 bit, or the second half of a phase 3 bit, would
// also work, but we have no guarantees about how many signal
// or noise bits we'd see in those phases.
if (test < 0) { // 0 1
noiseLevel += pPtr[1];
sigLevel += pPtr[2];
} else { // 1 0
sigLevel += pPtr[1];
noiseLevel += pPtr[2];
}
phase = 1;
pPtr += 3;
break;
default:
test = 0;
break;
}
if (test > 0)
theByte |= 1;
/* else if (test < 0) theByte |= 0; */
else if (test == 0) {
++errors;
}
if ((i & 7) == 7)
*pMsg++ = theByte;
theByte = theByte << 1;
}
// Score the mode S message and see if it's any good.
score = scoreModesMessage(msg, i);
if (score < 0)
continue; // can't decode
// apply the SNR to the score, so less noisy decodes are better,
// all things being equal
// snr = 5 * 20log10(sigLevel / noiseLevel) (in units of 0.2dB)
// = 100log10(sigLevel) - 100log10(noiseLevel)
while (sigLevel > 65535 || noiseLevel > 65535) {
sigLevel >>= 1;
noiseLevel >>= 1;
}
snr = Modes.log10lut[sigLevel] - Modes.log10lut[noiseLevel];
score += snr;
if (score > bestscore) {
// new high score!
bestmsg = msg;
bestscore = score;
bestphase = try_phase;
bestsnr = snr;
// swap to using the other buffer so we don't clobber our demodulated data
// (if we find a better result then we'll swap back, but that's OK because
// we no longer need this copy if we found a better one)
msg = (msg == msg1) ? msg2 : msg1;
}
}
// Do we have a candidate?
if (!bestmsg) {
Modes.stats_current.demod.badcrc++;
continue; // nope.
}
msglen = modesMessageLenByType(bestmsg[0] >> 3);
// Set initial mm structure details
mm.timestampMsg = Modes.timestampBlk + (j*5) + bestphase;
mm.signalLevel = (bestsnr > 255 ? 255 : (uint8_t)bestsnr);
mm.score = bestscore;
mm.bFlags = mm.correctedbits = 0;
// Decode the received message
if (decodeModesMessage(&mm, bestmsg) < 0)
continue;
// Update statistics
if (Modes.stats) {
if (mm.correctedbits == 0) {
Modes.stats_current.demod.goodcrc++;
Modes.stats_current.demod.goodcrc_byphase[bestphase%MODES_MAX_PHASE_STATS]++;
} else {
Modes.stats_current.demod.badcrc++;
Modes.stats_current.demod.fixed++;
if (mm.correctedbits)
Modes.stats_current.demod.bit_fix[mm.correctedbits-1]++;
}
}
// Skip over the message:
// (we actually skip to 8 bits before the end of the message,
// because we can often decode two messages that *almost* collide,
// where the preamble of the second message clobbered the last
// few bits of the first message, but the message bits didn't
// overlap)
j += (8 + msglen - 8)*12/5 - 1;
// Pass data to the next layer
useModesMessage(&mm);
}
}