dump1090/net_io.c
Matthias Wirth 82c5ff6724 Fix possible missing \n termination of TSV messages
If the \n termination of TSV messages is missing, faup1090 encounters
the following error:
Caught background error: list must have an even number of elements
    while executing
"array set row [split $line "\t"]"
    (object "::faup1090" method "::FaupConnection::data_available" body line 28)

This missing termination with \n can happen when p == end is true in the
overrun check. vsnprintf will always terminate the string with \0, so if
the vsnprintf is called to write the to the last position in the buffer
(end-1), it will write \0 instead to terminate the string as not to
overflow the buffer.
To catch that possibility the overrun check is changed to p < end as
then vsnprintf is assured to have had enough room to write the \0
termination to end-1.
2019-04-08 20:29:56 +02:00

2363 lines
81 KiB
C

// Part of dump1090, a Mode S message decoder for RTLSDR devices.
//
// net_io.c: network handling.
//
// Copyright (c) 2014-2016 Oliver Jowett <oliver@mutability.co.uk>
//
// This file is free software: you may copy, redistribute and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation, either version 2 of the License, or (at your
// option) any later version.
//
// This file is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// This file incorporates work covered by the following copyright and
// permission notice:
//
// Copyright (C) 2012 by Salvatore Sanfilippo <antirez@gmail.com>
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "dump1090.h"
/* for PRIX64 */
#include <inttypes.h>
#include <assert.h>
#include <stdarg.h>
//
// ============================= Networking =============================
//
// Note: here we disregard any kind of good coding practice in favor of
// extreme simplicity, that is:
//
// 1) We only rely on the kernel buffers for our I/O without any kind of
// user space buffering.
// 2) We don't register any kind of event handler, from time to time a
// function gets called and we accept new connections. All the rest is
// handled via non-blocking I/O and manually polling clients to see if
// they have something new to share with us when reading is needed.
static int handleBeastCommand(struct client *c, char *p);
static int decodeBinMessage(struct client *c, char *p);
static int decodeHexMessage(struct client *c, char *hex);
static void send_raw_heartbeat(struct net_service *service);
static void send_beast_heartbeat(struct net_service *service);
static void send_sbs_heartbeat(struct net_service *service);
static void writeFATSVEvent(struct modesMessage *mm, struct aircraft *a);
static void writeFATSVPositionUpdate(float lat, float lon, float alt);
static void autoset_modeac();
//
//=========================================================================
//
// Networking "stack" initialization
//
// Init a service with the given read/write characteristics, return the new service.
// Doesn't arrange for the service to listen or connect
struct net_service *serviceInit(const char *descr, struct net_writer *writer, heartbeat_fn hb, read_mode_t mode, const char *sep, read_fn handler)
{
struct net_service *service;
if (!(service = calloc(sizeof(*service), 1))) {
fprintf(stderr, "Out of memory allocating service %s\n", descr);
exit(1);
}
service->next = Modes.services;
Modes.services = service;
service->descr = descr;
service->listener_count = 0;
service->connections = 0;
service->writer = writer;
service->read_sep = sep;
service->read_mode = mode;
service->read_handler = handler;
if (service->writer) {
if (! (service->writer->data = malloc(MODES_OUT_BUF_SIZE)) ) {
fprintf(stderr, "Out of memory allocating output buffer for service %s\n", descr);
exit(1);
}
service->writer->service = service;
service->writer->dataUsed = 0;
service->writer->lastWrite = mstime();
service->writer->send_heartbeat = hb;
}
return service;
}
// Create a client attached to the given service using the provided socket FD
struct client *createSocketClient(struct net_service *service, int fd)
{
anetSetSendBuffer(Modes.aneterr, fd, (MODES_NET_SNDBUF_SIZE << Modes.net_sndbuf_size));
return createGenericClient(service, fd);
}
// Create a client attached to the given service using the provided FD (might not be a socket!)
struct client *createGenericClient(struct net_service *service, int fd)
{
struct client *c;
anetNonBlock(Modes.aneterr, fd);
if (!(c = (struct client *) malloc(sizeof(*c)))) {
fprintf(stderr, "Out of memory allocating a new %s network client\n", service->descr);
exit(1);
}
c->service = service;
c->next = Modes.clients;
c->fd = fd;
c->buflen = 0;
c->modeac_requested = 0;
Modes.clients = c;
++service->connections;
if (service->writer && service->connections == 1) {
service->writer->lastWrite = mstime(); // suppress heartbeat initially
}
return c;
}
// Initiate an outgoing connection which will use the given service.
// Return the new client or NULL if the connection failed
struct client *serviceConnect(struct net_service *service, char *addr, int port)
{
int s;
char buf[20];
// Bleh.
snprintf(buf, 20, "%d", port);
s = anetTcpConnect(Modes.aneterr, addr, buf);
if (s == ANET_ERR)
return NULL;
return createSocketClient(service, s);
}
// Set up the given service to listen on an address/port.
// _exits_ on failure!
void serviceListen(struct net_service *service, char *bind_addr, char *bind_ports)
{
int *fds = NULL;
int n = 0;
char *p, *end;
char buf[128];
if (service->listener_count > 0) {
fprintf(stderr, "Tried to set up the service %s twice!\n", service->descr);
exit(1);
}
if (!bind_ports || !strcmp(bind_ports, "") || !strcmp(bind_ports, "0"))
return;
p = bind_ports;
while (p && *p) {
int newfds[16];
int nfds, i;
end = strpbrk(p, ", ");
if (!end) {
strncpy(buf, p, sizeof(buf));
buf[sizeof(buf)-1] = 0;
p = NULL;
} else {
size_t len = end - p;
if (len >= sizeof(buf))
len = sizeof(buf) - 1;
memcpy(buf, p, len);
buf[len] = 0;
p = end + 1;
}
nfds = anetTcpServer(Modes.aneterr, buf, bind_addr, newfds, sizeof(newfds));
if (nfds == ANET_ERR) {
fprintf(stderr, "Error opening the listening port %s (%s): %s\n",
buf, service->descr, Modes.aneterr);
exit(1);
}
fds = realloc(fds, (n+nfds) * sizeof(int));
if (!fds) {
fprintf(stderr, "out of memory\n");
exit(1);
}
for (i = 0; i < nfds; ++i) {
anetNonBlock(Modes.aneterr, newfds[i]);
fds[n++] = newfds[i];
}
}
service->listener_count = n;
service->listener_fds = fds;
}
struct net_service *makeBeastInputService(void)
{
return serviceInit("Beast TCP input", NULL, NULL, READ_MODE_BEAST, NULL, decodeBinMessage);
}
struct net_service *makeFatsvOutputService(void)
{
return serviceInit("FATSV TCP output", &Modes.fatsv_out, NULL, READ_MODE_IGNORE, NULL, NULL);
}
void modesInitNet(void) {
struct net_service *s;
signal(SIGPIPE, SIG_IGN);
Modes.clients = NULL;
Modes.services = NULL;
// set up listeners
s = serviceInit("Raw TCP output", &Modes.raw_out, send_raw_heartbeat, READ_MODE_IGNORE, NULL, NULL);
serviceListen(s, Modes.net_bind_address, Modes.net_output_raw_ports);
s = serviceInit("Beast TCP output", &Modes.beast_out, send_beast_heartbeat, READ_MODE_BEAST_COMMAND, NULL, handleBeastCommand);
serviceListen(s, Modes.net_bind_address, Modes.net_output_beast_ports);
s = serviceInit("Basestation TCP output", &Modes.sbs_out, send_sbs_heartbeat, READ_MODE_IGNORE, NULL, NULL);
serviceListen(s, Modes.net_bind_address, Modes.net_output_sbs_ports);
s = serviceInit("Raw TCP input", NULL, NULL, READ_MODE_ASCII, "\n", decodeHexMessage);
serviceListen(s, Modes.net_bind_address, Modes.net_input_raw_ports);
s = makeBeastInputService();
serviceListen(s, Modes.net_bind_address, Modes.net_input_beast_ports);
}
//
//=========================================================================
//
// This function gets called from time to time when the decoding thread is
// awakened by new data arriving. This usually happens a few times every second
//
static struct client * modesAcceptClients(void) {
int fd;
struct net_service *s;
for (s = Modes.services; s; s = s->next) {
int i;
for (i = 0; i < s->listener_count; ++i) {
while ((fd = anetTcpAccept(Modes.aneterr, s->listener_fds[i])) >= 0) {
createSocketClient(s, fd);
}
}
}
return Modes.clients;
}
//
//=========================================================================
//
// On error free the client, collect the structure, adjust maxfd if needed.
//
static void modesCloseClient(struct client *c) {
if (!c->service) {
fprintf(stderr, "warning: double close of net client\n");
return;
}
// Clean up, but defer removing from the list until modesNetCleanup().
// This is because there may be stackframes still pointing at this
// client (unpredictably: reading from client A may cause client B to
// be freed)
close(c->fd);
c->service->connections--;
// mark it as inactive and ready to be freed
c->fd = -1;
c->service = NULL;
c->modeac_requested = 0;
autoset_modeac();
}
//
//=========================================================================
//
// Send the write buffer for the specified writer to all connected clients
//
static void flushWrites(struct net_writer *writer) {
struct client *c;
for (c = Modes.clients; c; c = c->next) {
if (!c->service)
continue;
if (c->service == writer->service) {
#ifndef _WIN32
int nwritten = write(c->fd, writer->data, writer->dataUsed);
#else
int nwritten = send(c->fd, writer->data, writer->dataUsed, 0 );
#endif
if (nwritten != writer->dataUsed) {
modesCloseClient(c);
}
}
}
writer->dataUsed = 0;
writer->lastWrite = mstime();
}
// Prepare to write up to 'len' bytes to the given net_writer.
// Returns a pointer to write to, or NULL to skip this write.
static void *prepareWrite(struct net_writer *writer, int len) {
if (!writer ||
!writer->service ||
!writer->service->connections ||
!writer->data)
return NULL;
if (len > MODES_OUT_BUF_SIZE)
return NULL;
if (writer->dataUsed + len >= MODES_OUT_BUF_SIZE) {
// Flush now to free some space
flushWrites(writer);
}
return writer->data + writer->dataUsed;
}
// Complete a write previously begun by prepareWrite.
// endptr should point one byte past the last byte written
// to the buffer returned from prepareWrite.
static void completeWrite(struct net_writer *writer, void *endptr) {
writer->dataUsed = endptr - writer->data;
if (writer->dataUsed >= Modes.net_output_flush_size) {
flushWrites(writer);
}
}
//
//=========================================================================
//
// Write raw output in Beast Binary format with Timestamp to TCP clients
//
static void modesSendBeastOutput(struct modesMessage *mm) {
int msgLen = mm->msgbits / 8;
char *p = prepareWrite(&Modes.beast_out, 2 + 2 * (7 + msgLen));
char ch;
int j;
int sig;
unsigned char *msg = (Modes.net_verbatim ? mm->verbatim : mm->msg);
if (!p)
return;
*p++ = 0x1a;
if (msgLen == MODES_SHORT_MSG_BYTES)
{*p++ = '2';}
else if (msgLen == MODES_LONG_MSG_BYTES)
{*p++ = '3';}
else if (msgLen == MODEAC_MSG_BYTES)
{*p++ = '1';}
else
{return;}
/* timestamp, big-endian */
*p++ = (ch = (mm->timestampMsg >> 40));
if (0x1A == ch) {*p++ = ch; }
*p++ = (ch = (mm->timestampMsg >> 32));
if (0x1A == ch) {*p++ = ch; }
*p++ = (ch = (mm->timestampMsg >> 24));
if (0x1A == ch) {*p++ = ch; }
*p++ = (ch = (mm->timestampMsg >> 16));
if (0x1A == ch) {*p++ = ch; }
*p++ = (ch = (mm->timestampMsg >> 8));
if (0x1A == ch) {*p++ = ch; }
*p++ = (ch = (mm->timestampMsg));
if (0x1A == ch) {*p++ = ch; }
sig = round(sqrt(mm->signalLevel) * 255);
if (mm->signalLevel > 0 && sig < 1)
sig = 1;
if (sig > 255)
sig = 255;
*p++ = ch = (char)sig;
if (0x1A == ch) {*p++ = ch; }
for (j = 0; j < msgLen; j++) {
*p++ = (ch = msg[j]);
if (0x1A == ch) {*p++ = ch; }
}
completeWrite(&Modes.beast_out, p);
}
static void send_beast_heartbeat(struct net_service *service)
{
static char heartbeat_message[] = { 0x1a, '1', 0, 0, 0, 0, 0, 0, 0, 0, 0 };
char *data;
if (!service->writer)
return;
data = prepareWrite(service->writer, sizeof(heartbeat_message));
if (!data)
return;
memcpy(data, heartbeat_message, sizeof(heartbeat_message));
completeWrite(service->writer, data + sizeof(heartbeat_message));
}
//
//=========================================================================
//
// Write raw output to TCP clients
//
static void modesSendRawOutput(struct modesMessage *mm) {
int msgLen = mm->msgbits / 8;
char *p = prepareWrite(&Modes.raw_out, msgLen*2 + 15);
int j;
unsigned char *msg = (Modes.net_verbatim ? mm->verbatim : mm->msg);
if (!p)
return;
if (Modes.mlat && mm->timestampMsg) {
/* timestamp, big-endian */
sprintf(p, "@%012" PRIX64,
mm->timestampMsg);
p += 13;
} else
*p++ = '*';
for (j = 0; j < msgLen; j++) {
sprintf(p, "%02X", msg[j]);
p += 2;
}
*p++ = ';';
*p++ = '\n';
completeWrite(&Modes.raw_out, p);
}
static void send_raw_heartbeat(struct net_service *service)
{
static char *heartbeat_message = "*0000;\n";
char *data;
int len = strlen(heartbeat_message);
if (!service->writer)
return;
data = prepareWrite(service->writer, len);
if (!data)
return;
memcpy(data, heartbeat_message, len);
completeWrite(service->writer, data + len);
}
//
//=========================================================================
//
// Write SBS output to TCP clients
//
static void modesSendSBSOutput(struct modesMessage *mm, struct aircraft *a) {
char *p;
struct timespec now;
struct tm stTime_receive, stTime_now;
int msgType;
// For now, suppress non-ICAO addresses
if (mm->addr & MODES_NON_ICAO_ADDRESS)
return;
p = prepareWrite(&Modes.sbs_out, 200);
if (!p)
return;
//
// SBS BS style output checked against the following reference
// http://www.homepages.mcb.net/bones/SBS/Article/Barebones42_Socket_Data.htm - seems comprehensive
//
// Decide on the basic SBS Message Type
switch (mm->msgtype) {
case 4:
case 20:
msgType = 5;
break;
break;
case 5:
case 21:
msgType = 6;
break;
case 0:
case 16:
msgType = 7;
break;
case 11:
msgType = 8;
break;
case 17:
case 18:
if (mm->metype >= 1 && mm->metype <= 4) {
msgType = 1;
} else if (mm->metype >= 5 && mm->metype <= 8) {
msgType = 2;
} else if (mm->metype >= 9 && mm->metype <= 18) {
msgType = 3;
} else if (mm->metype == 19) {
msgType = 4;
} else {
return;
}
break;
default:
return;
}
// Fields 1 to 6 : SBS message type and ICAO address of the aircraft and some other stuff
p += sprintf(p, "MSG,%d,1,1,%06X,1,", msgType, mm->addr);
// Find current system time
clock_gettime(CLOCK_REALTIME, &now);
localtime_r(&now.tv_sec, &stTime_now);
// Find message reception time
time_t received = (time_t) (mm->sysTimestampMsg / 1000);
localtime_r(&received, &stTime_receive);
// Fields 7 & 8 are the message reception time and date
p += sprintf(p, "%04d/%02d/%02d,", (stTime_receive.tm_year+1900),(stTime_receive.tm_mon+1), stTime_receive.tm_mday);
p += sprintf(p, "%02d:%02d:%02d.%03u,", stTime_receive.tm_hour, stTime_receive.tm_min, stTime_receive.tm_sec, (unsigned) (mm->sysTimestampMsg % 1000));
// Fields 9 & 10 are the current time and date
p += sprintf(p, "%04d/%02d/%02d,", (stTime_now.tm_year+1900),(stTime_now.tm_mon+1), stTime_now.tm_mday);
p += sprintf(p, "%02d:%02d:%02d.%03u", stTime_now.tm_hour, stTime_now.tm_min, stTime_now.tm_sec, (unsigned) (now.tv_nsec / 1000000U));
// Field 11 is the callsign (if we have it)
if (mm->callsign_valid) {p += sprintf(p, ",%s", mm->callsign);}
else {p += sprintf(p, ",");}
// Field 12 is the altitude (if we have it)
if (Modes.use_gnss) {
if (mm->altitude_geom_valid) {
p += sprintf(p, ",%dH", mm->altitude_geom);
} else if (mm->altitude_baro_valid && trackDataValid(&a->geom_delta_valid)) {
p += sprintf(p, ",%dH", mm->altitude_baro + a->geom_delta);
} else if (mm->altitude_baro_valid) {
p += sprintf(p, ",%d", mm->altitude_baro);
} else {
p += sprintf(p, ",");
}
} else {
if (mm->altitude_baro_valid) {
p += sprintf(p, ",%d", mm->altitude_baro);
} else if (mm->altitude_geom_valid && trackDataValid(&a->geom_delta_valid)) {
p += sprintf(p, ",%d", mm->altitude_geom - a->geom_delta);
} else {
p += sprintf(p, ",");
}
}
// Field 13 is the ground Speed (if we have it)
if (mm->gs_valid) {
p += sprintf(p, ",%.0f", mm->gs.selected);
} else {
p += sprintf(p, ",");
}
// Field 14 is the ground Heading (if we have it)
if (mm->heading_valid && mm->heading_type == HEADING_GROUND_TRACK) {
p += sprintf(p, ",%.0f", mm->heading);
} else {
p += sprintf(p, ",");
}
// Fields 15 and 16 are the Lat/Lon (if we have it)
if (mm->cpr_decoded) {
p += sprintf(p, ",%1.5f,%1.5f", mm->decoded_lat, mm->decoded_lon);
} else {
p += sprintf(p, ",,");
}
// Field 17 is the VerticalRate (if we have it)
if (Modes.use_gnss) {
if (mm->geom_rate_valid) {
p += sprintf(p, ",%dH", mm->geom_rate);
} else if (mm->baro_rate_valid) {
p += sprintf(p, ",%d", mm->baro_rate);
} else {
p += sprintf(p, ",");
}
} else {
if (mm->baro_rate_valid) {
p += sprintf(p, ",%d", mm->baro_rate);
} else if (mm->geom_rate_valid) {
p += sprintf(p, ",%d", mm->geom_rate);
} else {
p += sprintf(p, ",");
}
}
// Field 18 is the Squawk (if we have it)
if (mm->squawk_valid) {
p += sprintf(p, ",%04x", mm->squawk);
} else {
p += sprintf(p, ",");
}
// Field 19 is the Squawk Changing Alert flag (if we have it)
if (mm->alert_valid) {
if (mm->alert) {
p += sprintf(p, ",-1");
} else {
p += sprintf(p, ",0");
}
} else {
p += sprintf(p, ",");
}
// Field 20 is the Squawk Emergency flag (if we have it)
if (mm->squawk_valid) {
if ((mm->squawk == 0x7500) || (mm->squawk == 0x7600) || (mm->squawk == 0x7700)) {
p += sprintf(p, ",-1");
} else {
p += sprintf(p, ",0");
}
} else {
p += sprintf(p, ",");
}
// Field 21 is the Squawk Ident flag (if we have it)
if (mm->spi_valid) {
if (mm->spi) {
p += sprintf(p, ",-1");
} else {
p += sprintf(p, ",0");
}
} else {
p += sprintf(p, ",");
}
// Field 22 is the OnTheGround flag (if we have it)
switch (mm->airground) {
case AG_GROUND:
p += sprintf(p, ",-1");
break;
case AG_AIRBORNE:
p += sprintf(p, ",0");
break;
default:
p += sprintf(p, ",");
break;
}
p += sprintf(p, "\r\n");
completeWrite(&Modes.sbs_out, p);
}
static void send_sbs_heartbeat(struct net_service *service)
{
static char *heartbeat_message = "\r\n"; // is there a better one?
char *data;
int len = strlen(heartbeat_message);
if (!service->writer)
return;
data = prepareWrite(service->writer, len);
if (!data)
return;
memcpy(data, heartbeat_message, len);
completeWrite(service->writer, data + len);
}
//
//=========================================================================
//
void modesQueueOutput(struct modesMessage *mm, struct aircraft *a) {
int is_mlat = (mm->source == SOURCE_MLAT);
if (a && !is_mlat && mm->correctedbits < 2) {
// Don't ever forward 2-bit-corrected messages via SBS output.
// Don't ever forward mlat messages via SBS output.
modesSendSBSOutput(mm, a);
}
if (!is_mlat && (Modes.net_verbatim || mm->correctedbits < 2)) {
// Forward 2-bit-corrected messages via raw output only if --net-verbatim is set
// Don't ever forward mlat messages via raw output.
modesSendRawOutput(mm);
}
if ((!is_mlat || Modes.forward_mlat) && (Modes.net_verbatim || mm->correctedbits < 2)) {
// Forward 2-bit-corrected messages via beast output only if --net-verbatim is set
// Forward mlat messages via beast output only if --forward-mlat is set
modesSendBeastOutput(mm);
}
if (a && !is_mlat) {
writeFATSVEvent(mm, a);
}
}
// Decode a little-endian IEEE754 float (binary32)
float ieee754_binary32_le_to_float(uint8_t *data)
{
double sign = (data[3] & 0x80) ? -1.0 : 1.0;
int16_t raw_exponent = ((data[3] & 0x7f) << 1) | ((data[2] & 0x80) >> 7);
uint32_t raw_significand = ((data[2] & 0x7f) << 16) | (data[1] << 8) | data[0];
if (raw_exponent == 0) {
if (raw_significand == 0) {
/* -0 is treated like +0 */
return 0;
} else {
/* denormal */
return ldexp(sign * raw_significand, -126 - 23);
}
}
if (raw_exponent == 255) {
if (raw_significand == 0) {
/* +/-infinity */
return sign < 0 ? -INFINITY : INFINITY;
} else {
/* NaN */
#ifdef NAN
return NAN;
#else
return 0.0f;
#endif
}
}
/* normalized value */
return ldexp(sign * ((1 << 23) | raw_significand), raw_exponent - 127 - 23);
}
static void handle_radarcape_position(float lat, float lon, float alt)
{
if (!isfinite(lat) || lat < -90 || lat > 90 || !isfinite(lon) || lon < -180 || lon > 180 || !isfinite(alt))
return;
writeFATSVPositionUpdate(lat, lon, alt);
if (!(Modes.bUserFlags & MODES_USER_LATLON_VALID)) {
Modes.fUserLat = lat;
Modes.fUserLon = lon;
Modes.bUserFlags |= MODES_USER_LATLON_VALID;
receiverPositionChanged(lat, lon, alt);
}
}
// recompute global Mode A/C setting
static void autoset_modeac() {
struct client *c;
if (!Modes.mode_ac_auto)
return;
Modes.mode_ac = 0;
for (c = Modes.clients; c; c = c->next) {
if (c->modeac_requested) {
Modes.mode_ac = 1;
break;
}
}
}
// Send some Beast settings commands to a client
void sendBeastSettings(struct client *c, const char *settings)
{
int len;
char *buf, *p;
len = strlen(settings) * 3;
buf = p = alloca(len);
while (*settings) {
*p++ = 0x1a;
*p++ = '1';
*p++ = *settings++;
}
anetWrite(c->fd, buf, len);
}
//
// Handle a Beast command message.
// Currently, we just look for the Mode A/C command message
// and ignore everything else.
//
static int handleBeastCommand(struct client *c, char *p) {
if (p[0] != '1') {
// huh?
return 0;
}
switch (p[1]) {
case 'j':
c->modeac_requested = 0;
break;
case 'J':
c->modeac_requested = 1;
break;
}
autoset_modeac();
return 0;
}
//
//=========================================================================
//
// This function decodes a Beast binary format message
//
// The message is passed to the higher level layers, so it feeds
// the selected screen output, the network output and so forth.
//
// If the message looks invalid it is silently discarded.
//
// The function always returns 0 (success) to the caller as there is no
// case where we want broken messages here to close the client connection.
//
static int decodeBinMessage(struct client *c, char *p) {
int msgLen = 0;
int j;
char ch;
unsigned char msg[MODES_LONG_MSG_BYTES + 7];
static struct modesMessage zeroMessage;
struct modesMessage mm;
MODES_NOTUSED(c);
memset(&mm, 0, sizeof(mm));
ch = *p++; /// Get the message type
if (ch == '1' && Modes.mode_ac) {
msgLen = MODEAC_MSG_BYTES;
} else if (ch == '2') {
msgLen = MODES_SHORT_MSG_BYTES;
} else if (ch == '3') {
msgLen = MODES_LONG_MSG_BYTES;
} else if (ch == '5') {
// Special case for Radarcape position messages.
float lat, lon, alt;
for (j = 0; j < 21; j++) { // and the data
msg[j] = ch = *p++;
if (0x1A == ch) {p++;}
}
lat = ieee754_binary32_le_to_float(msg + 4);
lon = ieee754_binary32_le_to_float(msg + 8);
alt = ieee754_binary32_le_to_float(msg + 12);
handle_radarcape_position(lat, lon, alt);
} else {
// Ignore this.
return 0;
}
if (msgLen) {
mm = zeroMessage;
// Mark messages received over the internet as remote so that we don't try to
// pass them off as being received by this instance when forwarding them
mm.remote = 1;
// Grab the timestamp (big endian format)
mm.timestampMsg = 0;
for (j = 0; j < 6; j++) {
ch = *p++;
mm.timestampMsg = mm.timestampMsg << 8 | (ch & 255);
if (0x1A == ch) {p++;}
}
// record reception time as the time we read it.
mm.sysTimestampMsg = mstime();
ch = *p++; // Grab the signal level
mm.signalLevel = ((unsigned char)ch / 255.0);
mm.signalLevel = mm.signalLevel * mm.signalLevel;
if (0x1A == ch) {p++;}
for (j = 0; j < msgLen; j++) { // and the data
msg[j] = ch = *p++;
if (0x1A == ch) {p++;}
}
if (msgLen == MODEAC_MSG_BYTES) { // ModeA or ModeC
Modes.stats_current.remote_received_modeac++;
decodeModeAMessage(&mm, ((msg[0] << 8) | msg[1]));
} else {
int result;
Modes.stats_current.remote_received_modes++;
result = decodeModesMessage(&mm, msg);
if (result < 0) {
if (result == -1)
Modes.stats_current.remote_rejected_unknown_icao++;
else
Modes.stats_current.remote_rejected_bad++;
return 0;
} else {
Modes.stats_current.remote_accepted[mm.correctedbits]++;
}
}
useModesMessage(&mm);
}
return (0);
}
//
//=========================================================================
//
// Turn an hex digit into its 4 bit decimal value.
// Returns -1 if the digit is not in the 0-F range.
//
static int hexDigitVal(int c) {
c = tolower(c);
if (c >= '0' && c <= '9') return c-'0';
else if (c >= 'a' && c <= 'f') return c-'a'+10;
else return -1;
}
//
//=========================================================================
//
// This function decodes a string representing message in raw hex format
// like: *8D4B969699155600E87406F5B69F; The string is null-terminated.
//
// The message is passed to the higher level layers, so it feeds
// the selected screen output, the network output and so forth.
//
// If the message looks invalid it is silently discarded.
//
// The function always returns 0 (success) to the caller as there is no
// case where we want broken messages here to close the client connection.
//
static int decodeHexMessage(struct client *c, char *hex) {
int l = strlen(hex), j;
unsigned char msg[MODES_LONG_MSG_BYTES];
struct modesMessage mm;
static struct modesMessage zeroMessage;
MODES_NOTUSED(c);
mm = zeroMessage;
// Mark messages received over the internet as remote so that we don't try to
// pass them off as being received by this instance when forwarding them
mm.remote = 1;
mm.signalLevel = 0;
// Remove spaces on the left and on the right
while(l && isspace(hex[l-1])) {
hex[l-1] = '\0'; l--;
}
while(isspace(*hex)) {
hex++; l--;
}
// Turn the message into binary.
// Accept *-AVR raw @-AVR/BEAST timeS+raw %-AVR timeS+raw (CRC good) <-BEAST timeS+sigL+raw
// and some AVR records that we can understand
if (hex[l-1] != ';') {return (0);} // not complete - abort
switch(hex[0]) {
case '<': {
mm.signalLevel = ((hexDigitVal(hex[13])<<4) | hexDigitVal(hex[14])) / 255.0;
mm.signalLevel = mm.signalLevel * mm.signalLevel;
hex += 15; l -= 16; // Skip <, timestamp and siglevel, and ;
break;}
case '@': // No CRC check
case '%': { // CRC is OK
hex += 13; l -= 14; // Skip @,%, and timestamp, and ;
break;}
case '*':
case ':': {
hex++; l-=2; // Skip * and ;
break;}
default: {
return (0); // We don't know what this is, so abort
break;}
}
if ( (l != (MODEAC_MSG_BYTES * 2))
&& (l != (MODES_SHORT_MSG_BYTES * 2))
&& (l != (MODES_LONG_MSG_BYTES * 2)) )
{return (0);} // Too short or long message... broken
if ( (0 == Modes.mode_ac)
&& (l == (MODEAC_MSG_BYTES * 2)) )
{return (0);} // Right length for ModeA/C, but not enabled
for (j = 0; j < l; j += 2) {
int high = hexDigitVal(hex[j]);
int low = hexDigitVal(hex[j+1]);
if (high == -1 || low == -1) return 0;
msg[j/2] = (high << 4) | low;
}
// record reception time as the time we read it.
mm.sysTimestampMsg = mstime();
if (l == (MODEAC_MSG_BYTES * 2)) { // ModeA or ModeC
Modes.stats_current.remote_received_modeac++;
decodeModeAMessage(&mm, ((msg[0] << 8) | msg[1]));
} else { // Assume ModeS
int result;
Modes.stats_current.remote_received_modes++;
result = decodeModesMessage(&mm, msg);
if (result < 0) {
if (result == -1)
Modes.stats_current.remote_rejected_unknown_icao++;
else
Modes.stats_current.remote_rejected_bad++;
return 0;
} else {
Modes.stats_current.remote_accepted[mm.correctedbits]++;
}
}
useModesMessage(&mm);
return (0);
}
__attribute__ ((format (printf,3,0))) static char *safe_vsnprintf(char *p, char *end, const char *format, va_list ap)
{
p += vsnprintf(p < end ? p : NULL, p < end ? (size_t)(end - p) : 0, format, ap);
return p;
}
__attribute__ ((format (printf,3,4))) static char *safe_snprintf(char *p, char *end, const char *format, ...)
{
va_list ap;
va_start(ap, format);
p += vsnprintf(p < end ? p : NULL, p < end ? (size_t)(end - p) : 0, format, ap);
va_end(ap);
return p;
}
//
//=========================================================================
//
// Return a description of planes in json. No metric conversion
//
// usual caveats about function-returning-pointer-to-static-buffer apply
static const char *jsonEscapeString(const char *str) {
static char buf[1024];
const char *in = str;
char *out = buf, *end = buf + sizeof(buf) - 10;
for (; *in && out < end; ++in) {
unsigned char ch = *in;
if (ch == '"' || ch == '\\') {
*out++ = '\\';
*out++ = ch;
} else if (ch < 32 || ch > 127) {
out = safe_snprintf(out, end, "\\u%04x", ch);
} else {
*out++ = ch;
}
}
*out++ = 0;
return buf;
}
static char *append_flags(char *p, char *end, struct aircraft *a, datasource_t source)
{
p = safe_snprintf(p, end, "[");
char *start = p;
if (a->callsign_valid.source == source)
p = safe_snprintf(p, end, "\"callsign\",");
if (a->altitude_baro_valid.source == source)
p = safe_snprintf(p, end, "\"altitude\",");
if (a->altitude_geom_valid.source == source)
p = safe_snprintf(p, end, "\"alt_geom\",");
if (a->gs_valid.source == source)
p = safe_snprintf(p, end, "\"gs\",");
if (a->ias_valid.source == source)
p = safe_snprintf(p, end, "\"ias\",");
if (a->tas_valid.source == source)
p = safe_snprintf(p, end, "\"tas\",");
if (a->mach_valid.source == source)
p = safe_snprintf(p, end, "\"mach\",");
if (a->track_valid.source == source)
p = safe_snprintf(p, end, "\"track\",");
if (a->track_rate_valid.source == source)
p = safe_snprintf(p, end, "\"track_rate\",");
if (a->roll_valid.source == source)
p = safe_snprintf(p, end, "\"roll\",");
if (a->mag_heading_valid.source == source)
p = safe_snprintf(p, end, "\"mag_heading\",");
if (a->true_heading_valid.source == source)
p = safe_snprintf(p, end, "\"true_heading\",");
if (a->baro_rate_valid.source == source)
p = safe_snprintf(p, end, "\"baro_rate\",");
if (a->geom_rate_valid.source == source)
p = safe_snprintf(p, end, "\"geom_rate\",");
if (a->squawk_valid.source == source)
p = safe_snprintf(p, end, "\"squawk\",");
if (a->emergency_valid.source == source)
p = safe_snprintf(p, end, "\"emergency\",");
if (a->nav_qnh_valid.source == source)
p = safe_snprintf(p, end, "\"nav_qnh\",");
if (a->nav_altitude_mcp_valid.source == source)
p = safe_snprintf(p, end, "\"nav_altitude_mcp\",");
if (a->nav_altitude_fms_valid.source == source)
p = safe_snprintf(p, end, "\"nav_altitude_fms\",");
if (a->nav_heading_valid.source == source)
p = safe_snprintf(p, end, "\"nav_heading\",");
if (a->nav_modes_valid.source == source)
p = safe_snprintf(p, end, "\"nav_modes\",");
if (a->position_valid.source == source)
p = safe_snprintf(p, end, "\"lat\",\"lon\",\"nic\",\"rc\",");
if (a->nic_baro_valid.source == source)
p = safe_snprintf(p, end, "\"nic_baro\",");
if (a->nac_p_valid.source == source)
p = safe_snprintf(p, end, "\"nac_p\",");
if (a->nac_v_valid.source == source)
p = safe_snprintf(p, end, "\"nac_v\",");
if (a->sil_valid.source == source)
p = safe_snprintf(p, end, "\"sil\",\"sil_type\",");
if (a->gva_valid.source == source)
p = safe_snprintf(p, end, "\"gva\",");
if (a->sda_valid.source == source)
p = safe_snprintf(p, end, "\"sda\",");
if (p != start)
--p;
p = safe_snprintf(p, end, "]");
return p;
}
static struct {
nav_modes_t flag;
const char *name;
} nav_modes_names[] = {
{ NAV_MODE_AUTOPILOT, "autopilot" },
{ NAV_MODE_VNAV, "vnav" },
{ NAV_MODE_ALT_HOLD, "althold" },
{ NAV_MODE_APPROACH, "approach" },
{ NAV_MODE_LNAV, "lnav" },
{ NAV_MODE_TCAS, "tcas" },
{ 0, NULL }
};
static char *append_nav_modes(char *p, char *end, nav_modes_t flags, const char *quote, const char *sep)
{
int first = 1;
for (int i = 0; nav_modes_names[i].name; ++i) {
if (!(flags & nav_modes_names[i].flag)) {
continue;
}
if (!first) {
p = safe_snprintf(p, end, "%s", sep);
}
first = 0;
p = safe_snprintf(p, end, "%s%s%s", quote, nav_modes_names[i].name, quote);
}
return p;
}
static const char *nav_modes_flags_string(nav_modes_t flags) {
static char buf[256];
buf[0] = 0;
append_nav_modes(buf, buf + sizeof(buf), flags, "", " ");
return buf;
}
static const char *addrtype_enum_string(addrtype_t type) {
switch (type) {
case ADDR_ADSB_ICAO:
return "adsb_icao";
case ADDR_ADSB_ICAO_NT:
return "adsb_icao_nt";
case ADDR_ADSR_ICAO:
return "adsr_icao";
case ADDR_TISB_ICAO:
return "tisb_icao";
case ADDR_ADSB_OTHER:
return "adsb_other";
case ADDR_ADSR_OTHER:
return "adsr_other";
case ADDR_TISB_OTHER:
return "tisb_other";
case ADDR_TISB_TRACKFILE:
return "tisb_trackfile";
default:
return "unknown";
}
}
static const char *emergency_enum_string(emergency_t emergency)
{
switch (emergency) {
case EMERGENCY_NONE: return "none";
case EMERGENCY_GENERAL: return "general";
case EMERGENCY_LIFEGUARD: return "lifeguard";
case EMERGENCY_MINFUEL: return "minfuel";
case EMERGENCY_NORDO: return "nordo";
case EMERGENCY_UNLAWFUL: return "unlawful";
case EMERGENCY_DOWNED: return "downed";
default: return "reserved";
}
}
static const char *sil_type_enum_string(sil_type_t type)
{
switch (type) {
case SIL_UNKNOWN: return "unknown";
case SIL_PER_HOUR: return "perhour";
case SIL_PER_SAMPLE: return "persample";
default: return "invalid";
}
}
static const char *nav_altitude_source_enum_string(nav_altitude_source_t src)
{
switch (src) {
case NAV_ALT_INVALID: return "invalid";
case NAV_ALT_UNKNOWN: return "unknown";
case NAV_ALT_AIRCRAFT: return "aircraft";
case NAV_ALT_MCP: return "mcp";
case NAV_ALT_FMS: return "fms";
default: return "invalid";
}
}
char *generateAircraftJson(const char *url_path, int *len) {
uint64_t now = mstime();
struct aircraft *a;
int buflen = 32768; // The initial buffer is resized as needed
char *buf = (char *) malloc(buflen), *p = buf, *end = buf+buflen;
char *line_start;
int first = 1;
MODES_NOTUSED(url_path);
_messageNow = now;
p = safe_snprintf(p, end,
"{ \"now\" : %.1f,\n"
" \"messages\" : %u,\n"
" \"aircraft\" : [",
now / 1000.0,
Modes.stats_current.messages_total + Modes.stats_alltime.messages_total);
for (a = Modes.aircrafts; a; a = a->next) {
if (a->messages < 2) { // basic filter for bad decodes
continue;
}
if (first)
first = 0;
else
*p++ = ',';
retry:
line_start = p;
p = safe_snprintf(p, end, "\n {\"hex\":\"%s%06x\"", (a->addr & MODES_NON_ICAO_ADDRESS) ? "~" : "", a->addr & 0xFFFFFF);
if (a->addrtype != ADDR_ADSB_ICAO)
p = safe_snprintf(p, end, ",\"type\":\"%s\"", addrtype_enum_string(a->addrtype));
if (trackDataValid(&a->callsign_valid))
p = safe_snprintf(p, end, ",\"flight\":\"%s\"", jsonEscapeString(a->callsign));
if (trackDataValid(&a->airground_valid) && a->airground_valid.source >= SOURCE_MODE_S_CHECKED && a->airground == AG_GROUND)
p = safe_snprintf(p, end, ",\"alt_baro\":\"ground\"");
else {
if (trackDataValid(&a->altitude_baro_valid))
p = safe_snprintf(p, end, ",\"alt_baro\":%d", a->altitude_baro);
if (trackDataValid(&a->altitude_geom_valid))
p = safe_snprintf(p, end, ",\"alt_geom\":%d", a->altitude_geom);
}
if (trackDataValid(&a->gs_valid))
p = safe_snprintf(p, end, ",\"gs\":%.1f", a->gs);
if (trackDataValid(&a->ias_valid))
p = safe_snprintf(p, end, ",\"ias\":%u", a->ias);
if (trackDataValid(&a->tas_valid))
p = safe_snprintf(p, end, ",\"tas\":%u", a->tas);
if (trackDataValid(&a->mach_valid))
p = safe_snprintf(p, end, ",\"mach\":%.3f", a->mach);
if (trackDataValid(&a->track_valid))
p = safe_snprintf(p, end, ",\"track\":%.1f", a->track);
if (trackDataValid(&a->track_rate_valid))
p = safe_snprintf(p, end, ",\"track_rate\":%.2f", a->track_rate);
if (trackDataValid(&a->roll_valid))
p = safe_snprintf(p, end, ",\"roll\":%.1f", a->roll);
if (trackDataValid(&a->mag_heading_valid))
p = safe_snprintf(p, end, ",\"mag_heading\":%.1f", a->mag_heading);
if (trackDataValid(&a->true_heading_valid))
p = safe_snprintf(p, end, ",\"true_heading\":%.1f", a->true_heading);
if (trackDataValid(&a->baro_rate_valid))
p = safe_snprintf(p, end, ",\"baro_rate\":%d", a->baro_rate);
if (trackDataValid(&a->geom_rate_valid))
p = safe_snprintf(p, end, ",\"geom_rate\":%d", a->geom_rate);
if (trackDataValid(&a->squawk_valid))
p = safe_snprintf(p, end, ",\"squawk\":\"%04x\"", a->squawk);
if (trackDataValid(&a->emergency_valid))
p = safe_snprintf(p, end, ",\"emergency\":\"%s\"", emergency_enum_string(a->emergency));
if (a->category != 0)
p = safe_snprintf(p, end, ",\"category\":\"%02X\"", a->category);
if (trackDataValid(&a->nav_qnh_valid))
p = safe_snprintf(p, end, ",\"nav_qnh\":%.1f", a->nav_qnh);
if (trackDataValid(&a->nav_altitude_mcp_valid))
p = safe_snprintf(p, end, ",\"nav_altitude_mcp\":%d", a->nav_altitude_mcp);
if (trackDataValid(&a->nav_altitude_fms_valid))
p = safe_snprintf(p, end, ",\"nav_altitude_fms\":%d", a->nav_altitude_fms);
if (trackDataValid(&a->nav_heading_valid))
p = safe_snprintf(p, end, ",\"nav_heading\":%.1f", a->nav_heading);
if (trackDataValid(&a->nav_modes_valid)) {
p = safe_snprintf(p, end, ",\"nav_modes\":[");
p = append_nav_modes(p, end, a->nav_modes, "\"", ",");
p = safe_snprintf(p, end, "]");
}
if (trackDataValid(&a->position_valid))
p = safe_snprintf(p, end, ",\"lat\":%f,\"lon\":%f,\"nic\":%u,\"rc\":%u,\"seen_pos\":%.1f", a->lat, a->lon, a->pos_nic, a->pos_rc, (now - a->position_valid.updated)/1000.0);
if (a->adsb_version >= 0)
p = safe_snprintf(p, end, ",\"version\":%d", a->adsb_version);
if (trackDataValid(&a->nic_baro_valid))
p = safe_snprintf(p, end, ",\"nic_baro\":%u", a->nic_baro);
if (trackDataValid(&a->nac_p_valid))
p = safe_snprintf(p, end, ",\"nac_p\":%u", a->nac_p);
if (trackDataValid(&a->nac_v_valid))
p = safe_snprintf(p, end, ",\"nac_v\":%u", a->nac_v);
if (trackDataValid(&a->sil_valid))
p = safe_snprintf(p, end, ",\"sil\":%u", a->sil);
if (a->sil_type != SIL_INVALID)
p = safe_snprintf(p, end, ",\"sil_type\":\"%s\"", sil_type_enum_string(a->sil_type));
if (trackDataValid(&a->gva_valid))
p = safe_snprintf(p, end, ",\"gva\":%u", a->gva);
if (trackDataValid(&a->sda_valid))
p = safe_snprintf(p, end, ",\"sda\":%u", a->sda);
p = safe_snprintf(p, end, ",\"mlat\":");
p = append_flags(p, end, a, SOURCE_MLAT);
p = safe_snprintf(p, end, ",\"tisb\":");
p = append_flags(p, end, a, SOURCE_TISB);
p = safe_snprintf(p, end, ",\"messages\":%ld,\"seen\":%.1f,\"rssi\":%.1f}",
a->messages, (now - a->seen)/1000.0,
10 * log10((a->signalLevel[0] + a->signalLevel[1] + a->signalLevel[2] + a->signalLevel[3] +
a->signalLevel[4] + a->signalLevel[5] + a->signalLevel[6] + a->signalLevel[7] + 1e-5) / 8));
if ((p + 10) >= end) { // +10 to leave some space for the final line
// overran the buffer
int used = line_start - buf;
buflen *= 2;
buf = (char *) realloc(buf, buflen);
p = buf+used;
end = buf + buflen;
goto retry;
}
}
p = safe_snprintf(p, end, "\n ]\n}\n");
*len = p-buf;
return buf;
}
static char * appendStatsJson(char *p,
char *end,
struct stats *st,
const char *key)
{
int i;
p = safe_snprintf(p, end,
"\"%s\":{\"start\":%.1f,\"end\":%.1f",
key,
st->start / 1000.0,
st->end / 1000.0);
if (!Modes.net_only) {
p = safe_snprintf(p, end,
",\"local\":{\"samples_processed\":%llu"
",\"samples_dropped\":%llu"
",\"modeac\":%u"
",\"modes\":%u"
",\"bad\":%u"
",\"unknown_icao\":%u",
(unsigned long long)st->samples_processed,
(unsigned long long)st->samples_dropped,
st->demod_modeac,
st->demod_preambles,
st->demod_rejected_bad,
st->demod_rejected_unknown_icao);
for (i=0; i <= Modes.nfix_crc; ++i) {
if (i == 0) p = safe_snprintf(p, end, ",\"accepted\":[%u", st->demod_accepted[i]);
else p = safe_snprintf(p, end, ",%u", st->demod_accepted[i]);
}
p = safe_snprintf(p, end, "]");
if (st->signal_power_sum > 0 && st->signal_power_count > 0)
p = safe_snprintf(p, end, ",\"signal\":%.1f", 10 * log10(st->signal_power_sum / st->signal_power_count));
if (st->noise_power_sum > 0 && st->noise_power_count > 0)
p = safe_snprintf(p, end, ",\"noise\":%.1f", 10 * log10(st->noise_power_sum / st->noise_power_count));
if (st->peak_signal_power > 0)
p = safe_snprintf(p, end, ",\"peak_signal\":%.1f", 10 * log10(st->peak_signal_power));
p = safe_snprintf(p, end, ",\"strong_signals\":%d}", st->strong_signal_count);
}
if (Modes.net) {
p = safe_snprintf(p, end,
",\"remote\":{\"modeac\":%u"
",\"modes\":%u"
",\"bad\":%u"
",\"unknown_icao\":%u",
st->remote_received_modeac,
st->remote_received_modes,
st->remote_rejected_bad,
st->remote_rejected_unknown_icao);
for (i=0; i <= Modes.nfix_crc; ++i) {
if (i == 0) p = safe_snprintf(p, end, ",\"accepted\":[%u", st->remote_accepted[i]);
else p = safe_snprintf(p, end, ",%u", st->remote_accepted[i]);
}
p = safe_snprintf(p, end, "]}");
}
{
uint64_t demod_cpu_millis = (uint64_t)st->demod_cpu.tv_sec*1000UL + st->demod_cpu.tv_nsec/1000000UL;
uint64_t reader_cpu_millis = (uint64_t)st->reader_cpu.tv_sec*1000UL + st->reader_cpu.tv_nsec/1000000UL;
uint64_t background_cpu_millis = (uint64_t)st->background_cpu.tv_sec*1000UL + st->background_cpu.tv_nsec/1000000UL;
p = safe_snprintf(p, end,
",\"cpr\":{\"surface\":%u"
",\"airborne\":%u"
",\"global_ok\":%u"
",\"global_bad\":%u"
",\"global_range\":%u"
",\"global_speed\":%u"
",\"global_skipped\":%u"
",\"local_ok\":%u"
",\"local_aircraft_relative\":%u"
",\"local_receiver_relative\":%u"
",\"local_skipped\":%u"
",\"local_range\":%u"
",\"local_speed\":%u"
",\"filtered\":%u}"
",\"altitude_suppressed\":%u"
",\"cpu\":{\"demod\":%llu,\"reader\":%llu,\"background\":%llu}"
",\"tracks\":{\"all\":%u"
",\"single_message\":%u}"
",\"messages\":%u}",
st->cpr_surface,
st->cpr_airborne,
st->cpr_global_ok,
st->cpr_global_bad,
st->cpr_global_range_checks,
st->cpr_global_speed_checks,
st->cpr_global_skipped,
st->cpr_local_ok,
st->cpr_local_aircraft_relative,
st->cpr_local_receiver_relative,
st->cpr_local_skipped,
st->cpr_local_range_checks,
st->cpr_local_speed_checks,
st->cpr_filtered,
st->suppressed_altitude_messages,
(unsigned long long)demod_cpu_millis,
(unsigned long long)reader_cpu_millis,
(unsigned long long)background_cpu_millis,
st->unique_aircraft,
st->single_message_aircraft,
st->messages_total);
}
return p;
}
char *generateStatsJson(const char *url_path, int *len) {
struct stats add;
char *buf = (char *) malloc(4096), *p = buf, *end = buf + 4096;
MODES_NOTUSED(url_path);
p = safe_snprintf(p, end, "{\n");
p = appendStatsJson(p, end, &Modes.stats_current, "latest");
p = safe_snprintf(p, end, ",\n");
p = appendStatsJson(p, end, &Modes.stats_1min[Modes.stats_latest_1min], "last1min");
p = safe_snprintf(p, end, ",\n");
p = appendStatsJson(p, end, &Modes.stats_5min, "last5min");
p = safe_snprintf(p, end, ",\n");
p = appendStatsJson(p, end, &Modes.stats_15min, "last15min");
p = safe_snprintf(p, end, ",\n");
add_stats(&Modes.stats_alltime, &Modes.stats_current, &add);
p = appendStatsJson(p, end, &add, "total");
p = safe_snprintf(p, end, "\n}\n");
assert(p < end);
*len = p-buf;
return buf;
}
//
// Return a description of the receiver in json.
//
char *generateReceiverJson(const char *url_path, int *len)
{
char *buf = (char *) malloc(1024), *p = buf;
int history_size;
MODES_NOTUSED(url_path);
// work out number of valid history entries
if (Modes.json_aircraft_history[HISTORY_SIZE-1].content == NULL)
history_size = Modes.json_aircraft_history_next;
else
history_size = HISTORY_SIZE;
p += sprintf(p, "{ " \
"\"version\" : \"%s\", "
"\"refresh\" : %.0f, "
"\"history\" : %d",
MODES_DUMP1090_VERSION, 1.0*Modes.json_interval, history_size);
if (Modes.json_location_accuracy && (Modes.fUserLat != 0.0 || Modes.fUserLon != 0.0)) {
if (Modes.json_location_accuracy == 1) {
p += sprintf(p, ", " \
"\"lat\" : %.2f, "
"\"lon\" : %.2f",
Modes.fUserLat, Modes.fUserLon); // round to 2dp - about 0.5-1km accuracy - for privacy reasons
} else {
p += sprintf(p, ", " \
"\"lat\" : %.6f, "
"\"lon\" : %.6f",
Modes.fUserLat, Modes.fUserLon); // exact location
}
}
p += sprintf(p, " }\n");
*len = (p - buf);
return buf;
}
char *generateHistoryJson(const char *url_path, int *len)
{
int history_index = -1;
if (sscanf(url_path, "/data/history_%d.json", &history_index) != 1)
return NULL;
if (history_index < 0 || history_index >= HISTORY_SIZE)
return NULL;
if (!Modes.json_aircraft_history[history_index].content)
return NULL;
*len = Modes.json_aircraft_history[history_index].clen;
return strdup(Modes.json_aircraft_history[history_index].content);
}
// Write JSON to file
void writeJsonToFile(const char *file, char * (*generator) (const char *,int*))
{
#ifndef _WIN32
char pathbuf[PATH_MAX];
char tmppath[PATH_MAX];
int fd;
int len = 0;
mode_t mask;
char *content;
if (!Modes.json_dir)
return;
snprintf(tmppath, PATH_MAX, "%s/%s.XXXXXX", Modes.json_dir, file);
tmppath[PATH_MAX-1] = 0;
fd = mkstemp(tmppath);
if (fd < 0)
return;
mask = umask(0);
umask(mask);
fchmod(fd, 0644 & ~mask);
snprintf(pathbuf, PATH_MAX, "/data/%s", file);
pathbuf[PATH_MAX-1] = 0;
content = generator(pathbuf, &len);
if (write(fd, content, len) != len)
goto error_1;
if (close(fd) < 0)
goto error_2;
snprintf(pathbuf, PATH_MAX, "%s/%s", Modes.json_dir, file);
pathbuf[PATH_MAX-1] = 0;
rename(tmppath, pathbuf);
free(content);
return;
error_1:
close(fd);
error_2:
unlink(tmppath);
free(content);
return;
#endif
}
//
//=========================================================================
//
// This function polls the clients using read() in order to receive new
// messages from the net.
//
// The message is supposed to be separated from the next message by the
// separator 'sep', which is a null-terminated C string.
//
// Every full message received is decoded and passed to the higher layers
// calling the function's 'handler'.
//
// The handler returns 0 on success, or 1 to signal this function we should
// close the connection with the client in case of non-recoverable errors.
//
static void modesReadFromClient(struct client *c) {
int left;
int nread;
int bContinue = 1;
while (bContinue) {
left = MODES_CLIENT_BUF_SIZE - c->buflen - 1; // leave 1 extra byte for NUL termination in the ASCII case
// If our buffer is full discard it, this is some badly formatted shit
if (left <= 0) {
c->buflen = 0;
left = MODES_CLIENT_BUF_SIZE;
// If there is garbage, read more to discard it ASAP
}
#ifndef _WIN32
nread = read(c->fd, c->buf+c->buflen, left);
#else
nread = recv(c->fd, c->buf+c->buflen, left, 0);
if (nread < 0) {errno = WSAGetLastError();}
#endif
// If we didn't get all the data we asked for, then return once we've processed what we did get.
if (nread != left) {
bContinue = 0;
}
if (nread == 0) { // End of file
modesCloseClient(c);
return;
}
#ifndef _WIN32
if (nread < 0 && (errno == EAGAIN || errno == EWOULDBLOCK)) // No data available (not really an error)
#else
if (nread < 0 && errno == EWOULDBLOCK) // No data available (not really an error)
#endif
{
return;
}
if (nread < 0) { // Other errors
modesCloseClient(c);
return;
}
c->buflen += nread;
char *som = c->buf; // first byte of next message
char *eod = som + c->buflen; // one byte past end of data
char *p;
switch (c->service->read_mode) {
case READ_MODE_IGNORE:
// drop the bytes on the floor
som = eod;
break;
case READ_MODE_BEAST:
// This is the Beast Binary scanning case.
// If there is a complete message still in the buffer, there must be the separator 'sep'
// in the buffer, note that we full-scan the buffer at every read for simplicity.
while (som < eod && ((p = memchr(som, (char) 0x1a, eod - som)) != NULL)) { // The first byte of buffer 'should' be 0x1a
som = p; // consume garbage up to the 0x1a
++p; // skip 0x1a
if (p >= eod) {
// Incomplete message in buffer, retry later
break;
}
char *eom; // one byte past end of message
if (*p == '1') {
eom = p + MODEAC_MSG_BYTES + 8; // point past remainder of message
} else if (*p == '2') {
eom = p + MODES_SHORT_MSG_BYTES + 8;
} else if (*p == '3') {
eom = p + MODES_LONG_MSG_BYTES + 8;
} else if (*p == '4') {
eom = p + MODES_LONG_MSG_BYTES + 8;
} else if (*p == '5') {
eom = p + MODES_LONG_MSG_BYTES + 8;
} else {
// Not a valid beast message, skip 0x1a and try again
++som;
continue;
}
// we need to be careful of double escape characters in the message body
for (p = som + 1; p < eod && p < eom; p++) {
if (0x1A == *p) {
p++;
eom++;
}
}
if (eom > eod) { // Incomplete message in buffer, retry later
break;
}
// Have a 0x1a followed by 1/2/3/4/5 - pass message to handler.
if (c->service->read_handler(c, som + 1)) {
modesCloseClient(c);
return;
}
// advance to next message
som = eom;
}
break;
case READ_MODE_BEAST_COMMAND:
while (som < eod && ((p = memchr(som, (char) 0x1a, eod - som)) != NULL)) { // The first byte of buffer 'should' be 0x1a
char *eom; // one byte past end of message
som = p; // consume garbage up to the 0x1a
++p; // skip 0x1a
if (p >= eod) {
// Incomplete message in buffer, retry later
break;
}
if (*p == '1') {
eom = p + 2;
} else {
// Not a valid beast command, skip 0x1a and try again
++som;
continue;
}
// we need to be careful of double escape characters in the message body
for (p = som + 1; p < eod && p < eom; p++) {
if (0x1A == *p) {
p++;
eom++;
}
}
if (eom > eod) { // Incomplete message in buffer, retry later
break;
}
// Have a 0x1a followed by 1 - pass message to handler.
if (c->service->read_handler(c, som + 1)) {
modesCloseClient(c);
return;
}
// advance to next message
som = eom;
}
break;
case READ_MODE_ASCII:
//
// This is the ASCII scanning case, AVR RAW or HTTP at present
// If there is a complete message still in the buffer, there must be the separator 'sep'
// in the buffer, note that we full-scan the buffer at every read for simplicity.
// Always NUL-terminate so we are free to use strstr()
// nb: we never fill the last byte of the buffer with read data (see above) so this is safe
*eod = '\0';
while (som < eod && (p = strstr(som, c->service->read_sep)) != NULL) { // end of first message if found
*p = '\0'; // The handler expects null terminated strings
if (c->service->read_handler(c, som)) { // Pass message to handler.
modesCloseClient(c); // Handler returns 1 on error to signal we .
return; // should close the client connection
}
som = p + strlen(c->service->read_sep); // Move to start of next message
}
break;
}
if (som > c->buf) { // We processed something - so
c->buflen = eod - som; // Update the unprocessed buffer length
memmove(c->buf, som, c->buflen); // Move what's remaining to the start of the buffer
} else { // If no message was decoded process the next client
return;
}
}
}
__attribute__ ((format (printf,4,5))) static char *appendFATSV(char *p, char *end, const char *field, const char *format, ...)
{
va_list ap;
va_start(ap, format);
p = safe_snprintf(p, end, "%s\t", field);
p = safe_vsnprintf(p, end, format, ap);
p = safe_snprintf(p, end, "\t");
va_end(ap);
return p;
}
#define TSV_MAX_PACKET_SIZE 800
#define TSV_VERSION "4E"
static void writeFATSVPositionUpdate(float lat, float lon, float alt)
{
static float last_lat, last_lon, last_alt;
if (lat == last_lat && lon == last_lon && alt == last_alt)
return;
last_lat = lat;
last_lon = lon;
last_alt = alt;
char *p = prepareWrite(&Modes.fatsv_out, TSV_MAX_PACKET_SIZE);
if (!p)
return;
char *end = p + TSV_MAX_PACKET_SIZE;
p = appendFATSV(p, end, "_v", "%s", TSV_VERSION);
p = appendFATSV(p, end, "clock", "%" PRIu64, messageNow() / 1000);
p = appendFATSV(p, end, "type", "%s", "location_update");
p = appendFATSV(p, end, "lat", "%.5f", lat);
p = appendFATSV(p, end, "lon", "%.5f", lon);
p = appendFATSV(p, end, "alt", "%.0f", alt);
p = appendFATSV(p, end, "altref", "%s", "egm96_meters");
--p; // remove last tab
p = safe_snprintf(p, end, "\n");
if (p < end)
completeWrite(&Modes.fatsv_out, p);
else
fprintf(stderr, "fatsv: output too large (max %d, overran by %d)\n", TSV_MAX_PACKET_SIZE, (int) (p - end));
}
static void writeFATSVEventMessage(struct modesMessage *mm, const char *datafield, unsigned char *data, size_t len)
{
char *p = prepareWrite(&Modes.fatsv_out, TSV_MAX_PACKET_SIZE);
if (!p)
return;
char *end = p + TSV_MAX_PACKET_SIZE;
p = appendFATSV(p, end, "_v", "%s", TSV_VERSION);
p = appendFATSV(p, end, "clock", "%" PRIu64, messageNow() / 1000);
p = appendFATSV(p, end, (mm->addr & MODES_NON_ICAO_ADDRESS) ? "otherid" : "hexid", "%06X", mm->addr & 0xFFFFFF);
if (mm->addrtype != ADDR_ADSB_ICAO) {
p = appendFATSV(p, end, "addrtype", "%s", addrtype_enum_string(mm->addrtype));
}
p = safe_snprintf(p, end, "%s\t", datafield);
for (size_t i = 0; i < len; ++i) {
p = safe_snprintf(p, end, "%02X", data[i]);
}
p = safe_snprintf(p, end, "\n");
if (p < end)
completeWrite(&Modes.fatsv_out, p);
else
fprintf(stderr, "fatsv: output too large (max %d, overran by %d)\n", TSV_MAX_PACKET_SIZE, (int) (p - end));
# undef bufsize
}
static void writeFATSVEvent(struct modesMessage *mm, struct aircraft *a)
{
// Write event records for a couple of message types.
if (!Modes.fatsv_out.service || !Modes.fatsv_out.service->connections) {
return; // not enabled or no active connections
}
if (a->messages < 2) // basic filter for bad decodes
return;
switch (mm->msgtype) {
case 20:
case 21:
// DF 20/21: Comm-B: emit if they've changed since we last sent them
switch (mm->commb_format) {
case COMMB_DATALINK_CAPS:
// BDS 1,0: data link capability report
if (memcmp(mm->MB, a->fatsv_emitted_bds_10, 7) != 0) {
memcpy(a->fatsv_emitted_bds_10, mm->MB, 7);
writeFATSVEventMessage(mm, "datalink_caps", mm->MB, 7);
}
break;
case COMMB_ACAS_RA:
// BDS 3,0: ACAS RA report
if (memcmp(mm->MB, a->fatsv_emitted_bds_30, 7) != 0) {
memcpy(a->fatsv_emitted_bds_30, mm->MB, 7);
writeFATSVEventMessage(mm, "commb_acas_ra", mm->MB, 7);
}
break;
default:
// nothing
break;
}
break;
case 17:
case 18:
// DF 17/18: extended squitter
if (mm->metype == 28 && mm->mesub == 2 && memcmp(mm->ME, &a->fatsv_emitted_es_acas_ra, 7) != 0) {
// type 28 subtype 2: ACAS RA report
// first byte has the type/subtype, remaining bytes match the BDS 3,0 format
memcpy(a->fatsv_emitted_es_acas_ra, mm->ME, 7);
writeFATSVEventMessage(mm, "es_acas_ra", mm->ME, 7);
} else if (mm->metype == 31 && (mm->mesub == 0 || mm->mesub == 1) && memcmp(mm->ME, a->fatsv_emitted_es_status, 7) != 0) {
// aircraft operational status
memcpy(a->fatsv_emitted_es_status, mm->ME, 7);
writeFATSVEventMessage(mm, "es_op_status", mm->ME, 7);
}
break;
}
}
static inline unsigned unsigned_difference(unsigned v1, unsigned v2)
{
return (v1 > v2) ? (v1 - v2) : (v2 - v1);
}
static inline float heading_difference(float h1, float h2)
{
float d = fabs(h1 - h2);
return (d < 180) ? d : (360 - d);
}
__attribute__ ((format (printf,6,7))) static char *appendFATSVMeta(char *p, char *end, const char *field, struct aircraft *a, const data_validity *source, const char *format, ...)
{
const char *sourcetype;
switch (source->source) {
case SOURCE_MODE_S:
sourcetype = "U";
break;
case SOURCE_MODE_S_CHECKED:
sourcetype = "S";
break;
case SOURCE_TISB:
sourcetype = "T";
break;
case SOURCE_ADSB:
sourcetype = "A";
break;
default:
// don't want to forward data sourced from these
return p;
}
if (!trackDataValid(source)) {
// expired data
return p;
}
if (source->updated > messageNow()) {
// data in the future
return p;
}
if (source->updated < a->fatsv_last_emitted) {
// not updated since last time
return p;
}
uint64_t age = (messageNow() - source->updated) / 1000;
if (age > 255) {
// too old
return p;
}
p = safe_snprintf(p, end, "%s\t", field);
va_list ap;
va_start(ap, format);
p = safe_vsnprintf(p, end, format, ap);
va_end(ap);
p = safe_snprintf(p, end, " %" PRIu64 " %s\t", age, sourcetype);
return p;
}
static const char *airground_enum_string(airground_t ag)
{
switch (ag) {
case AG_AIRBORNE:
return "A+";
case AG_GROUND:
return "G+";
default:
return "?";
}
}
static void writeFATSV()
{
struct aircraft *a;
static uint64_t next_update;
if (!Modes.fatsv_out.service || !Modes.fatsv_out.service->connections) {
return; // not enabled or no active connections
}
uint64_t now = mstime();
if (now < next_update) {
return;
}
// scan once a second at most
next_update = now + 1000;
for (a = Modes.aircrafts; a; a = a->next) {
if (a->messages < 2) // basic filter for bad decodes
continue;
// don't emit if it hasn't updated since last time
if (a->seen < a->fatsv_last_emitted) {
continue;
}
// Pretend we are "processing a message" so the validity checks work as expected
_messageNow = a->seen;
// some special cases:
int altValid = trackDataValid(&a->altitude_baro_valid);
int airgroundValid = trackDataValid(&a->airground_valid) && a->airground_valid.source >= SOURCE_MODE_S_CHECKED; // for non-ADS-B transponders, only trust DF11 CA field
int gsValid = trackDataValid(&a->gs_valid);
int squawkValid = trackDataValid(&a->squawk_valid);
int callsignValid = trackDataValid(&a->callsign_valid) && strcmp(a->callsign, " ") != 0;
int positionValid = trackDataValid(&a->position_valid);
// If we are definitely on the ground, suppress any unreliable altitude info.
// When on the ground, ADS-B transponders don't emit an ADS-B message that includes
// altitude, so a corrupted Mode S altitude response from some other in-the-air AC
// might be taken as the "best available altitude" and produce e.g. "airGround G+ alt 31000".
if (airgroundValid && a->airground == AG_GROUND && a->altitude_baro_valid.source < SOURCE_MODE_S_CHECKED)
altValid = 0;
// if it hasn't changed altitude, heading, or speed much,
// don't update so often
int changed =
(altValid && abs(a->altitude_baro - a->fatsv_emitted_altitude_baro) >= 50) ||
(trackDataValid(&a->altitude_geom_valid) && abs(a->altitude_geom - a->fatsv_emitted_altitude_geom) >= 50) ||
(trackDataValid(&a->baro_rate_valid) && abs(a->baro_rate - a->fatsv_emitted_baro_rate) > 500) ||
(trackDataValid(&a->geom_rate_valid) && abs(a->geom_rate - a->fatsv_emitted_geom_rate) > 500) ||
(trackDataValid(&a->track_valid) && heading_difference(a->track, a->fatsv_emitted_track) >= 2) ||
(trackDataValid(&a->track_rate_valid) && fabs(a->track_rate - a->fatsv_emitted_track_rate) >= 0.5) ||
(trackDataValid(&a->roll_valid) && fabs(a->roll - a->fatsv_emitted_roll) >= 5.0) ||
(trackDataValid(&a->mag_heading_valid) && heading_difference(a->mag_heading, a->fatsv_emitted_mag_heading) >= 2) ||
(trackDataValid(&a->true_heading_valid) && heading_difference(a->true_heading, a->fatsv_emitted_true_heading) >= 2) ||
(gsValid && fabs(a->gs - a->fatsv_emitted_gs) >= 25) ||
(trackDataValid(&a->ias_valid) && unsigned_difference(a->ias, a->fatsv_emitted_ias) >= 25) ||
(trackDataValid(&a->tas_valid) && unsigned_difference(a->tas, a->fatsv_emitted_tas) >= 25) ||
(trackDataValid(&a->mach_valid) && fabs(a->mach - a->fatsv_emitted_mach) >= 0.02);
int immediate =
(trackDataValid(&a->nav_altitude_mcp_valid) && unsigned_difference(a->nav_altitude_mcp, a->fatsv_emitted_nav_altitude_mcp) > 50) ||
(trackDataValid(&a->nav_altitude_fms_valid) && unsigned_difference(a->nav_altitude_fms, a->fatsv_emitted_nav_altitude_fms) > 50) ||
(trackDataValid(&a->nav_altitude_src_valid) && a->nav_altitude_src != a->fatsv_emitted_nav_altitude_src) ||
(trackDataValid(&a->nav_heading_valid) && heading_difference(a->nav_heading, a->fatsv_emitted_nav_heading) > 2) ||
(trackDataValid(&a->nav_modes_valid) && a->nav_modes != a->fatsv_emitted_nav_modes) ||
(trackDataValid(&a->nav_qnh_valid) && fabs(a->nav_qnh - a->fatsv_emitted_nav_qnh) > 0.8) || // 0.8 is the ES message resolution
(callsignValid && strcmp(a->callsign, a->fatsv_emitted_callsign) != 0) ||
(airgroundValid && a->airground == AG_AIRBORNE && a->fatsv_emitted_airground == AG_GROUND) ||
(airgroundValid && a->airground == AG_GROUND && a->fatsv_emitted_airground == AG_AIRBORNE) ||
(squawkValid && a->squawk != a->fatsv_emitted_squawk) ||
(trackDataValid(&a->emergency_valid) && a->emergency != a->fatsv_emitted_emergency);
uint64_t minAge;
if (immediate) {
// a change we want to emit right away
minAge = 0;
} else if (!positionValid) {
// don't send mode S very often
minAge = 30000;
} else if ((airgroundValid && a->airground == AG_GROUND) ||
(altValid && a->altitude_baro < 500 && (!gsValid || a->gs < 200)) ||
(gsValid && a->gs < 100 && (!altValid || a->altitude_baro < 1000))) {
// we are probably on the ground, increase the update rate
minAge = 1000;
} else if (!altValid || a->altitude_baro < 10000) {
// Below 10000 feet, emit up to every 5s when changing, 10s otherwise
minAge = (changed ? 5000 : 10000);
} else {
// Above 10000 feet, emit up to every 10s when changing, 30s otherwise
minAge = (changed ? 10000 : 30000);
}
if ((now - a->fatsv_last_emitted) < minAge)
continue;
char *p = prepareWrite(&Modes.fatsv_out, TSV_MAX_PACKET_SIZE);
if (!p)
return;
char *end = p + TSV_MAX_PACKET_SIZE;
p = appendFATSV(p, end, "_v", "%s", TSV_VERSION);
p = appendFATSV(p, end, "clock", "%" PRIu64, messageNow() / 1000);
p = appendFATSV(p, end, (a->addr & MODES_NON_ICAO_ADDRESS) ? "otherid" : "hexid", "%06X", a->addr & 0xFFFFFF);
// for fields we only emit on change,
// occasionally re-emit them all
int forceEmit = (now - a->fatsv_last_force_emit) > 600000;
// these don't change often / at all, only emit when they change
if (forceEmit || a->addrtype != a->fatsv_emitted_addrtype) {
p = appendFATSV(p, end, "addrtype", "%s", addrtype_enum_string(a->addrtype));
}
if (forceEmit || a->adsb_version != a->fatsv_emitted_adsb_version) {
p = appendFATSV(p, end, "adsb_version", "%d", a->adsb_version);
}
if (forceEmit || a->category != a->fatsv_emitted_category) {
p = appendFATSV(p, end, "category", "%02X", a->category);
}
if (trackDataValid(&a->nac_p_valid) && (forceEmit || a->nac_p != a->fatsv_emitted_nac_p)) {
p = appendFATSVMeta(p, end, "nac_p", a, &a->nac_p_valid, "%u", a->nac_p);
}
if (trackDataValid(&a->nac_v_valid) && (forceEmit || a->nac_v != a->fatsv_emitted_nac_v)) {
p = appendFATSVMeta(p, end, "nac_v", a, &a->nac_v_valid, "%u", a->nac_v);
}
if (trackDataValid(&a->sil_valid) && (forceEmit || a->sil != a->fatsv_emitted_sil)) {
p = appendFATSVMeta(p, end, "sil", a, &a->sil_valid, "%u", a->sil);
}
if (trackDataValid(&a->sil_valid) && (forceEmit || a->sil_type != a->fatsv_emitted_sil_type)) {
p = appendFATSVMeta(p, end, "sil_type", a, &a->sil_valid, "%s", sil_type_enum_string(a->sil_type));
}
if (trackDataValid(&a->nic_baro_valid) && (forceEmit || a->nic_baro != a->fatsv_emitted_nic_baro)) {
p = appendFATSVMeta(p, end, "nic_baro", a, &a->nic_baro_valid, "%u", a->nic_baro);
}
// only emit alt, speed, latlon, track etc if they have been received since the last time
// and are not stale
char *dataStart = p;
// special cases
if (airgroundValid)
p = appendFATSVMeta(p, end, "airGround", a, &a->airground_valid, "%s", airground_enum_string(a->airground));
if (squawkValid)
p = appendFATSVMeta(p, end, "squawk", a, &a->squawk_valid, "%04x", a->squawk);
if (callsignValid)
p = appendFATSVMeta(p, end, "ident", a, &a->callsign_valid, "{%s}", a->callsign);
if (altValid)
p = appendFATSVMeta(p, end, "alt", a, &a->altitude_baro_valid, "%d", a->altitude_baro);
if (positionValid) {
p = appendFATSVMeta(p, end, "position", a, &a->position_valid, "{%.5f %.5f %u %u}", a->lat, a->lon, a->pos_nic, a->pos_rc);
}
p = appendFATSVMeta(p, end, "alt_gnss", a, &a->altitude_geom_valid, "%d", a->altitude_geom);
p = appendFATSVMeta(p, end, "vrate", a, &a->baro_rate_valid, "%d", a->baro_rate);
p = appendFATSVMeta(p, end, "vrate_geom", a, &a->geom_rate_valid, "%d", a->geom_rate);
p = appendFATSVMeta(p, end, "speed", a, &a->gs_valid, "%.1f", a->gs);
p = appendFATSVMeta(p, end, "speed_ias", a, &a->ias_valid, "%u", a->ias);
p = appendFATSVMeta(p, end, "speed_tas", a, &a->tas_valid, "%u", a->tas);
p = appendFATSVMeta(p, end, "mach", a, &a->mach_valid, "%.3f", a->mach);
p = appendFATSVMeta(p, end, "track", a, &a->track_valid, "%.1f", a->track);
p = appendFATSVMeta(p, end, "track_rate", a, &a->track_rate_valid, "%.2f", a->track_rate);
p = appendFATSVMeta(p, end, "roll", a, &a->roll_valid, "%.1f", a->roll);
p = appendFATSVMeta(p, end, "heading_magnetic", a, &a->mag_heading_valid, "%.1f", a->mag_heading);
p = appendFATSVMeta(p, end, "heading_true", a, &a->true_heading_valid, "%.1f", a->true_heading);
p = appendFATSVMeta(p, end, "nav_alt_mcp", a, &a->nav_altitude_mcp_valid, "%u", a->nav_altitude_mcp);
p = appendFATSVMeta(p, end, "nav_alt_fms", a, &a->nav_altitude_fms_valid, "%u", a->nav_altitude_fms);
p = appendFATSVMeta(p, end, "nav_alt_src", a, &a->nav_altitude_src_valid, "%s", nav_altitude_source_enum_string(a->nav_altitude_src));
p = appendFATSVMeta(p, end, "nav_heading", a, &a->nav_heading_valid, "%.1f", a->nav_heading);
p = appendFATSVMeta(p, end, "nav_modes", a, &a->nav_modes_valid, "{%s}", nav_modes_flags_string(a->nav_modes));
p = appendFATSVMeta(p, end, "nav_qnh", a, &a->nav_qnh_valid, "%.1f", a->nav_qnh);
p = appendFATSVMeta(p, end, "emergency", a, &a->emergency_valid, "%s", emergency_enum_string(a->emergency));
// if we didn't get anything interesting, bail out.
// We don't need to do anything special to unwind prepareWrite().
if (p == dataStart) {
continue;
}
--p; // remove last tab
p = safe_snprintf(p, end, "\n");
if (p < end)
completeWrite(&Modes.fatsv_out, p);
else
fprintf(stderr, "fatsv: output too large (max %d, overran by %d)\n", TSV_MAX_PACKET_SIZE, (int) (p - end));
a->fatsv_emitted_altitude_baro = a->altitude_baro;
a->fatsv_emitted_altitude_geom = a->altitude_geom;
a->fatsv_emitted_baro_rate = a->baro_rate;
a->fatsv_emitted_geom_rate = a->geom_rate;
a->fatsv_emitted_gs = a->gs;
a->fatsv_emitted_ias = a->ias;
a->fatsv_emitted_tas = a->tas;
a->fatsv_emitted_mach = a->mach;
a->fatsv_emitted_track = a->track;
a->fatsv_emitted_track_rate = a->track_rate;
a->fatsv_emitted_roll = a->roll;
a->fatsv_emitted_mag_heading = a->mag_heading;
a->fatsv_emitted_true_heading = a->true_heading;
a->fatsv_emitted_airground = a->airground;
a->fatsv_emitted_nav_altitude_mcp = a->nav_altitude_mcp;
a->fatsv_emitted_nav_altitude_fms = a->nav_altitude_fms;
a->fatsv_emitted_nav_altitude_src = a->nav_altitude_src;
a->fatsv_emitted_nav_heading = a->nav_heading;
a->fatsv_emitted_nav_modes = a->nav_modes;
a->fatsv_emitted_nav_qnh = a->nav_qnh;
memcpy(a->fatsv_emitted_callsign, a->callsign, sizeof(a->fatsv_emitted_callsign));
a->fatsv_emitted_addrtype = a->addrtype;
a->fatsv_emitted_adsb_version = a->adsb_version;
a->fatsv_emitted_category = a->category;
a->fatsv_emitted_squawk = a->squawk;
a->fatsv_emitted_nac_p = a->nac_p;
a->fatsv_emitted_nac_v = a->nac_v;
a->fatsv_emitted_sil = a->sil;
a->fatsv_emitted_sil_type = a->sil_type;
a->fatsv_emitted_nic_baro = a->nic_baro;
a->fatsv_emitted_emergency = a->emergency;
a->fatsv_last_emitted = now;
if (forceEmit) {
a->fatsv_last_force_emit = now;
}
}
}
//
// Perform periodic network work
//
void modesNetPeriodicWork(void) {
struct client *c, **prev;
struct net_service *s;
uint64_t now = mstime();
int need_flush = 0;
// Accept new connections
modesAcceptClients();
// Read from clients
for (c = Modes.clients; c; c = c->next) {
if (!c->service)
continue;
if (c->service->read_handler)
modesReadFromClient(c);
}
// Generate FATSV output
writeFATSV();
// If we have generated no messages for a while, send
// a heartbeat
if (Modes.net_heartbeat_interval) {
for (s = Modes.services; s; s = s->next) {
if (s->writer &&
s->connections &&
s->writer->send_heartbeat &&
(s->writer->lastWrite + Modes.net_heartbeat_interval) <= now) {
s->writer->send_heartbeat(s);
}
}
}
// If we have data that has been waiting to be written for a while,
// write it now.
for (s = Modes.services; s; s = s->next) {
if (s->writer &&
s->writer->dataUsed &&
(need_flush || (s->writer->lastWrite + Modes.net_output_flush_interval) <= now)) {
flushWrites(s->writer);
}
}
// Unlink and free closed clients
for (prev = &Modes.clients, c = *prev; c; c = *prev) {
if (c->fd == -1) {
// Recently closed, prune from list
*prev = c->next;
free(c);
} else {
prev = &c->next;
}
}
}
//
// =============================== Network IO ===========================
//