dump1090/mode_s.c
Oliver Jowett a1fdc07db2 Restructure decoding to use a helper function to extract bit ranges
With forced inlining this is about as fast, and it is much less
errorprone than the twisty little maze of handcoded bitshifts that
it was before.

(notably, at least one error - in the ACAS RI field - has been fixed)
2016-09-01 22:45:49 +01:00

1699 lines
56 KiB
C

// Part of dump1090, a Mode S message decoder for RTLSDR devices.
//
// mode_s.c: Mode S message decoding.
//
// Copyright (c) 2014-2016 Oliver Jowett <oliver@mutability.co.uk>
//
// This file is free software: you may copy, redistribute and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation, either version 2 of the License, or (at your
// option) any later version.
//
// This file is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// This file incorporates work covered by the following copyright and
// permission notice:
//
// Copyright (C) 2012 by Salvatore Sanfilippo <antirez@gmail.com>
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "dump1090.h"
/* for PRIX64 */
#include <inttypes.h>
#include <assert.h>
//
// ===================== Mode S detection and decoding ===================
//
//
//
/* A timestamp that indicates the data is synthetic, created from a
* multilateration result
*/
#define MAGIC_MLAT_TIMESTAMP 0xFF004D4C4154ULL
//=========================================================================
//
// Given the Downlink Format (DF) of the message, return the message length in bits.
//
// All known DF's 16 or greater are long. All known DF's 15 or less are short.
// There are lots of unused codes in both category, so we can assume ICAO will stick to
// these rules, meaning that the most significant bit of the DF indicates the length.
//
int modesMessageLenByType(int type) {
return (type & 0x10) ? MODES_LONG_MSG_BITS : MODES_SHORT_MSG_BITS ;
}
//
//=========================================================================
//
// In the squawk (identity) field bits are interleaved as follows in
// (message bit 20 to bit 32):
//
// C1-A1-C2-A2-C4-A4-ZERO-B1-D1-B2-D2-B4-D4
//
// So every group of three bits A, B, C, D represent an integer from 0 to 7.
//
// The actual meaning is just 4 octal numbers, but we convert it into a hex
// number tha happens to represent the four octal numbers.
//
// For more info: http://en.wikipedia.org/wiki/Gillham_code
//
static int decodeID13Field(int ID13Field) {
int hexGillham = 0;
if (ID13Field & 0x1000) {hexGillham |= 0x0010;} // Bit 12 = C1
if (ID13Field & 0x0800) {hexGillham |= 0x1000;} // Bit 11 = A1
if (ID13Field & 0x0400) {hexGillham |= 0x0020;} // Bit 10 = C2
if (ID13Field & 0x0200) {hexGillham |= 0x2000;} // Bit 9 = A2
if (ID13Field & 0x0100) {hexGillham |= 0x0040;} // Bit 8 = C4
if (ID13Field & 0x0080) {hexGillham |= 0x4000;} // Bit 7 = A4
//if (ID13Field & 0x0040) {hexGillham |= 0x0800;} // Bit 6 = X or M
if (ID13Field & 0x0020) {hexGillham |= 0x0100;} // Bit 5 = B1
if (ID13Field & 0x0010) {hexGillham |= 0x0001;} // Bit 4 = D1 or Q
if (ID13Field & 0x0008) {hexGillham |= 0x0200;} // Bit 3 = B2
if (ID13Field & 0x0004) {hexGillham |= 0x0002;} // Bit 2 = D2
if (ID13Field & 0x0002) {hexGillham |= 0x0400;} // Bit 1 = B4
if (ID13Field & 0x0001) {hexGillham |= 0x0004;} // Bit 0 = D4
return (hexGillham);
}
//
//=========================================================================
//
// Decode the 13 bit AC altitude field (in DF 20 and others).
// Returns the altitude, and set 'unit' to either UNIT_METERS or UNIT_FEET.
//
static int decodeAC13Field(int AC13Field, altitude_unit_t *unit) {
int m_bit = AC13Field & 0x0040; // set = meters, clear = feet
int q_bit = AC13Field & 0x0010; // set = 25 ft encoding, clear = Gillham Mode C encoding
if (!m_bit) {
*unit = UNIT_FEET;
if (q_bit) {
// N is the 11 bit integer resulting from the removal of bit Q and M
int n = ((AC13Field & 0x1F80) >> 2) |
((AC13Field & 0x0020) >> 1) |
(AC13Field & 0x000F);
// The final altitude is resulting number multiplied by 25, minus 1000.
return ((n * 25) - 1000);
} else {
// N is an 11 bit Gillham coded altitude
int n = ModeAToModeC(decodeID13Field(AC13Field));
if (n < -12) {
return INVALID_ALTITUDE;
}
return (100 * n);
}
} else {
*unit = UNIT_METERS;
// TODO: Implement altitude when meter unit is selected
return INVALID_ALTITUDE;
}
}
//
//=========================================================================
//
// Decode the 12 bit AC altitude field (in DF 17 and others).
//
static int decodeAC12Field(int AC12Field, altitude_unit_t *unit) {
int q_bit = AC12Field & 0x10; // Bit 48 = Q
*unit = UNIT_FEET;
if (q_bit) {
/// N is the 11 bit integer resulting from the removal of bit Q at bit 4
int n = ((AC12Field & 0x0FE0) >> 1) |
(AC12Field & 0x000F);
// The final altitude is the resulting number multiplied by 25, minus 1000.
return ((n * 25) - 1000);
} else {
// Make N a 13 bit Gillham coded altitude by inserting M=0 at bit 6
int n = ((AC12Field & 0x0FC0) << 1) |
(AC12Field & 0x003F);
n = ModeAToModeC(decodeID13Field(n));
if (n < -12) {
return INVALID_ALTITUDE;
}
return (100 * n);
}
}
//
//=========================================================================
//
// Decode the 7 bit ground movement field PWL exponential style scale
//
static int decodeMovementField(int movement) {
int gspeed;
// Note : movement codes 0,125,126,127 are all invalid, but they are
// trapped for before this function is called.
if (movement > 123) gspeed = 199; // > 175kt
else if (movement > 108) gspeed = ((movement - 108) * 5) + 100;
else if (movement > 93) gspeed = ((movement - 93) * 2) + 70;
else if (movement > 38) gspeed = ((movement - 38) ) + 15;
else if (movement > 12) gspeed = ((movement - 11) >> 1) + 2;
else if (movement > 8) gspeed = ((movement - 6) >> 2) + 1;
else gspeed = 0;
return (gspeed);
}
// Correct a decoded native-endian Address Announced field
// (from bits 8-31) if it is affected by the given error
// syndrome. Updates *addr and returns >0 if changed, 0 if
// it was unaffected.
static int correct_aa_field(uint32_t *addr, struct errorinfo *ei)
{
int i;
int addr_errors = 0;
if (!ei)
return 0;
for (i = 0; i < ei->errors; ++i) {
if (ei->bit[i] >= 8 && ei->bit[i] <= 31) {
*addr ^= 1 << (31 - ei->bit[i]);
++addr_errors;
}
}
return addr_errors;
}
// The first bit (MSB of the first byte) is numbered 1, for consistency
// with how the specs number them.
// Extract one bit from a message.
static inline __attribute__((always_inline)) unsigned getbit(unsigned char *data, unsigned bitnum)
{
unsigned bi = bitnum - 1;
unsigned by = bi >> 3;
unsigned mask = 1 << (7 - (bi & 7));
return (data[by] & mask) != 0;
}
// Extract some bits (firstbit .. lastbit inclusive) from a message.
static inline __attribute__((always_inline)) unsigned getbits(unsigned char *data, unsigned firstbit, unsigned lastbit)
{
unsigned fbi = firstbit - 1;
unsigned lbi = lastbit - 1;
unsigned nbi = (lastbit - firstbit + 1);
unsigned fby = fbi >> 3;
unsigned lby = lbi >> 3;
unsigned nby = (lby - fby) + 1;
unsigned shift = 7 - (lbi & 7);
unsigned topmask = 0xFF >> (fbi & 7);
assert (fbi <= lbi);
assert (nbi <= 32);
assert (nby <= 5);
if (nby == 5) {
return
((data[fby] & topmask) << (32 - shift)) |
(data[fby + 1] << (24 - shift)) |
(data[fby + 2] << (16 - shift)) |
(data[fby + 3] << (8 - shift)) |
(data[fby + 4] >> shift);
} else if (nby == 4) {
return
((data[fby] & topmask) << (24 - shift)) |
(data[fby + 1] << (16 - shift)) |
(data[fby + 2] << (8 - shift)) |
(data[fby + 3] >> shift);
} else if (nby == 3) {
return
((data[fby] & topmask) << (16 - shift)) |
(data[fby + 1] << (8 - shift)) |
(data[fby + 2] >> shift);
} else if (nby == 2) {
return
((data[fby] & topmask) << (8 - shift)) |
(data[fby + 1] >> shift);
} else if (nby == 1) {
return
(data[fby] & topmask) >> shift;
} else {
return 0;
}
}
// Score how plausible this ModeS message looks.
// The more positive, the more reliable the message is
// 1000: DF 0/4/5/16/24 with a CRC-derived address matching a known aircraft
// 1800: DF17/18 with good CRC and an address matching a known aircraft
// 1400: DF17/18 with good CRC and an address not matching a known aircraft
// 900: DF17/18 with 1-bit error and an address matching a known aircraft
// 700: DF17/18 with 1-bit error and an address not matching a known aircraft
// 450: DF17/18 with 2-bit error and an address matching a known aircraft
// 350: DF17/18 with 2-bit error and an address not matching a known aircraft
// 1600: DF11 with IID==0, good CRC and an address matching a known aircraft
// 800: DF11 with IID==0, 1-bit error and an address matching a known aircraft
// 750: DF11 with IID==0, good CRC and an address not matching a known aircraft
// 375: DF11 with IID==0, 1-bit error and an address not matching a known aircraft
// 1000: DF11 with IID!=0, good CRC and an address matching a known aircraft
// 500: DF11 with IID!=0, 1-bit error and an address matching a known aircraft
// 1000: DF20/21 with a CRC-derived address matching a known aircraft
// 500: DF20/21 with a CRC-derived address matching a known aircraft (bottom 16 bits only - overlay control in use)
// -1: message might be valid, but we couldn't validate the CRC against a known ICAO
// -2: bad message or unrepairable CRC error
int scoreModesMessage(unsigned char *msg, int validbits)
{
int msgtype, msgbits, crc, iid;
uint32_t addr;
struct errorinfo *ei;
static unsigned char all_zeros[14] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
if (validbits < 56)
return -2;
msgtype = getbits(msg, 1, 5); // Downlink Format
msgbits = modesMessageLenByType(msgtype);
if (validbits < msgbits)
return -2;
if (!memcmp(all_zeros, msg, msgbits/8))
return -2;
crc = modesChecksum(msg, msgbits);
switch (msgtype) {
case 0: // short air-air surveillance
case 4: // surveillance, altitude reply
case 5: // surveillance, altitude reply
case 16: // long air-air surveillance
case 24: // Comm-D (ELM)
case 25: // Comm-D (ELM)
case 26: // Comm-D (ELM)
case 27: // Comm-D (ELM)
case 28: // Comm-D (ELM)
case 29: // Comm-D (ELM)
case 30: // Comm-D (ELM)
case 31: // Comm-D (ELM)
return icaoFilterTest(crc) ? 1000 : -1;
case 11: // All-call reply
iid = crc & 0x7f;
crc = crc & 0xffff80;
addr = getbits(msg, 9, 32);
ei = modesChecksumDiagnose(crc, msgbits);
if (!ei)
return -2; // can't correct errors
// see crc.c comments: we do not attempt to fix
// more than single-bit errors, as two-bit
// errors are ambiguous in DF11.
if (ei->errors > 1)
return -2; // can't correct errors
// fix any errors in the address field
correct_aa_field(&addr, ei);
// validate address
if (iid == 0) {
if (icaoFilterTest(addr))
return 1600 / (ei->errors + 1);
else
return 750 / (ei->errors + 1);
} else {
if (icaoFilterTest(addr))
return 1000 / (ei->errors + 1);
else
return -1;
}
case 17: // Extended squitter
case 18: // Extended squitter/non-transponder
ei = modesChecksumDiagnose(crc, msgbits);
if (!ei)
return -2; // can't correct errors
// fix any errors in the address field
addr = getbits(msg, 9, 32);
correct_aa_field(&addr, ei);
if (icaoFilterTest(addr))
return 1800 / (ei->errors+1);
else
return 1400 / (ei->errors+1);
case 20: // Comm-B, altitude reply
case 21: // Comm-B, identity reply
if (icaoFilterTest(crc))
return 1000; // Address/Parity
#if 0
// This doesn't seem useful, as we mistake a lot of CRC errors
// for overlay control
if (icaoFilterTestFuzzy(crc))
return 500; // Data/Parity
#endif
return -2;
default:
// unknown message type
return -2;
}
}
//
//=========================================================================
//
// Decode a raw Mode S message demodulated as a stream of bytes by detectModeS(),
// and split it into fields populating a modesMessage structure.
//
static void decodeExtendedSquitter(struct modesMessage *mm);
static void decodeCommB(struct modesMessage *mm);
static char *ais_charset = "@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_ !\"#$%&'()*+,-./0123456789:;<=>?";
// return 0 if all OK
// -1: message might be valid, but we couldn't validate the CRC against a known ICAO
// -2: bad message or unrepairable CRC error
int decodeModesMessage(struct modesMessage *mm, unsigned char *msg)
{
// Work on our local copy.
memcpy(mm->msg, msg, MODES_LONG_MSG_BYTES);
if (Modes.net_verbatim) {
// Preserve the original uncorrected copy for later forwarding
memcpy(mm->verbatim, msg, MODES_LONG_MSG_BYTES);
}
msg = mm->msg;
// Get the message type ASAP as other operations depend on this
mm->msgtype = getbits(msg, 1, 5); // Downlink Format
mm->msgbits = modesMessageLenByType(mm->msgtype);
mm->crc = modesChecksum(msg, mm->msgbits);
mm->correctedbits = 0;
mm->addr = 0;
// Do checksum work and set fields that depend on the CRC
switch (mm->msgtype) {
case 0: // short air-air surveillance
case 4: // surveillance, altitude reply
case 5: // surveillance, altitude reply
case 16: // long air-air surveillance
case 24: // Comm-D (ELM)
case 25: // Comm-D (ELM)
case 26: // Comm-D (ELM)
case 27: // Comm-D (ELM)
case 28: // Comm-D (ELM)
case 29: // Comm-D (ELM)
case 30: // Comm-D (ELM)
case 31: // Comm-D (ELM)
// These message types use Address/Parity, i.e. our CRC syndrome is the sender's ICAO address.
// We can't tell if the CRC is correct or not as we don't know the correct address.
// Accept the message if it appears to be from a previously-seen aircraft
if (!icaoFilterTest(mm->crc)) {
return -1;
}
mm->source = SOURCE_MODE_S;
mm->addr = mm->crc;
break;
case 11: // All-call reply
// This message type uses Parity/Interrogator, i.e. our CRC syndrome is CL + IC from the uplink message
// which we can't see. So we don't know if the CRC is correct or not.
//
// however! CL + IC only occupy the lower 7 bits of the CRC. So if we ignore those bits when testing
// the CRC we can still try to detect/correct errors.
mm->IID = mm->crc & 0x7f;
if (mm->crc & 0xffff80) {
int addr;
struct errorinfo *ei = modesChecksumDiagnose(mm->crc & 0xffff80, mm->msgbits);
if (!ei) {
return -2; // couldn't fix it
}
// see crc.c comments: we do not attempt to fix
// more than single-bit errors, as two-bit
// errors are ambiguous in DF11.
if (ei->errors > 1)
return -2; // can't correct errors
mm->correctedbits = ei->errors;
modesChecksumFix(msg, ei);
// check whether the corrected message looks sensible
// we are conservative here: only accept corrected messages that
// match an existing aircraft.
addr = getbits(msg, 9, 32);
if (!icaoFilterTest(addr)) {
return -1;
}
}
mm->source = SOURCE_MODE_S_CHECKED;
break;
case 17: // Extended squitter
case 18: { // Extended squitter/non-transponder
struct errorinfo *ei;
int addr1, addr2;
// These message types use Parity/Interrogator, but are specified to set II=0
if (mm->crc != 0) {
ei = modesChecksumDiagnose(mm->crc, mm->msgbits);
if (!ei) {
return -2; // couldn't fix it
}
addr1 = getbits(msg, 9, 32);
mm->correctedbits = ei->errors;
modesChecksumFix(msg, ei);
addr2 = getbits(msg, 9, 32);
// we are conservative here: only accept corrected messages that
// match an existing aircraft.
if (addr1 != addr2 && !icaoFilterTest(addr2)) {
return -1;
}
}
mm->source = SOURCE_ADSB; // TIS-B decoding will override this if needed
break;
}
case 20: // Comm-B, altitude reply
case 21: // Comm-B, identity reply
// These message types either use Address/Parity (see DF0 etc)
// or Data Parity where the requested BDS is also xored into the top byte.
// So not only do we not know whether the CRC is right, we also don't know if
// the ICAO is right! Ow.
// Try an exact match
if (icaoFilterTest(mm->crc)) {
// OK.
mm->source = SOURCE_MODE_S;
mm->addr = mm->crc;
break;
}
// BDS / overlay control just doesn't work out.
return -1; // no good
default:
// All other message types, we don't know how to handle their CRCs, give up
return -2;
}
// decode the bulk of the message
// AA (Address announced)
if (mm->msgtype == 11 || mm->msgtype == 17 || mm->msgtype == 18) {
mm->AA = mm->addr = getbits(msg, 9, 32);
}
// AC (Altitude Code)
if (mm->msgtype == 0 || mm->msgtype == 4 || mm->msgtype == 16 || mm->msgtype == 20) {
mm->AC = getbits(msg, 20, 32);
if (mm->AC) { // Only attempt to decode if a valid (non zero) altitude is present
mm->altitude = decodeAC13Field(mm->AC, &mm->altitude_unit);
if (mm->altitude != INVALID_ALTITUDE)
mm->altitude_valid = 1;
mm->altitude_source = ALTITUDE_BARO;
}
}
// AF (DF19 Application Field) not decoded
// CA (Capability)
if (mm->msgtype == 11 || mm->msgtype == 17) {
mm->CA = getbits(msg, 6, 8);
switch (mm->CA) {
case 0:
mm->airground = AG_UNCERTAIN;
break;
case 4:
mm->airground = AG_GROUND;
break;
case 5:
mm->airground = AG_AIRBORNE;
break;
case 6:
mm->airground = AG_UNCERTAIN;
break;
case 7:
mm->airground = AG_UNCERTAIN;
break;
}
}
// CC (Cross-link capability)
if (mm->msgtype == 0) {
mm->CC = getbit(msg, 7);
}
// CF (Control field)
if (mm->msgtype == 18) {
mm->CF = getbits(msg, 5, 8);
}
// DR (Downlink Request)
if (mm->msgtype == 4 || mm->msgtype == 5 || mm->msgtype == 20 || mm->msgtype == 21) {
mm->DR = getbits(msg, 9, 13);
}
// FS (Flight Status)
if (mm->msgtype == 4 || mm->msgtype == 5 || mm->msgtype == 20 || mm->msgtype == 21) {
mm->FS = getbits(msg, 6, 8);
mm->alert_valid = 1;
mm->spi_valid = 1;
switch (mm->FS) {
case 0:
mm->airground = AG_UNCERTAIN;
break;
case 1:
mm->airground = AG_GROUND;
break;
case 2:
mm->airground = AG_UNCERTAIN;
mm->alert = 1;
break;
case 3:
mm->airground = AG_GROUND;
mm->alert = 1;
break;
case 4:
mm->airground = AG_UNCERTAIN;
mm->alert = 1;
mm->spi = 1;
break;
case 5:
mm->airground = AG_UNCERTAIN;
mm->spi = 1;
break;
default:
mm->spi_valid = 0;
mm->alert_valid = 0;
break;
}
}
// ID (Identity)
if (mm->msgtype == 5 || mm->msgtype == 21) {
// Gillham encoded Squawk
mm->ID = getbits(msg, 20, 32);
if (mm->ID) {
mm->squawk = decodeID13Field(mm->ID);
mm->squawk_valid = 1;
}
}
// KE (Control, ELM)
if (mm->msgtype >= 24 && mm->msgtype <= 31) {
mm->KE = getbit(msg, 4);
}
// MB (messsage, Comm-B)
if (mm->msgtype == 20 || mm->msgtype == 21) {
memcpy(mm->MB, &msg[4], 7);
decodeCommB(mm);
}
// MD (message, Comm-D)
if (mm->msgtype >= 24 && mm->msgtype <= 31) {
memcpy(mm->MD, &msg[1], 10);
}
// ME (message, extended squitter)
if (mm->msgtype == 17 || mm->msgtype == 18) {
memcpy(mm->ME, &msg[4], 7);
decodeExtendedSquitter(mm);
}
// MV (message, ACAS)
if (mm->msgtype == 16) {
memcpy(mm->MV, &msg[4], 7);
}
// ND (number of D-segment, Comm-D)
if (mm->msgtype >= 24 && mm->msgtype <= 31) {
mm->ND = getbits(msg, 5, 8);
}
// RI (Reply information, ACAS)
if (mm->msgtype == 0 || mm->msgtype == 16) {
mm->RI = getbits(msg, 14, 17);
}
// SL (Sensitivity level, ACAS)
if (mm->msgtype == 0 || mm->msgtype == 16) {
mm->SL = getbits(msg, 9, 11);
}
// UM (Utility Message)
if (mm->msgtype == 4 || mm->msgtype == 5 || mm->msgtype == 20 || mm->msgtype == 21) {
mm->UM = getbits(msg, 14, 19);
}
// VS (Vertical Status)
if (mm->msgtype == 0 || mm->msgtype == 16) {
mm->VS = getbit(msg, 6);
if (mm->VS)
mm->airground = AG_GROUND;
else
mm->airground = AG_UNCERTAIN;
}
if (!mm->correctedbits && (mm->msgtype == 17 || mm->msgtype == 18 || (mm->msgtype == 11 && mm->IID == 0))) {
// No CRC errors seen, and either it was an DF17/18 extended squitter
// or a DF11 acquisition squitter with II = 0. We probably have the right address.
// We wait until here to do this as we may have needed to decode an ES to note
// the type of address in DF18 messages.
// NB this is the only place that adds addresses!
icaoFilterAdd(mm->addr);
}
// MLAT overrides all other sources
if (mm->remote && mm->timestampMsg == MAGIC_MLAT_TIMESTAMP)
mm->source = SOURCE_MLAT;
// all done
return 0;
}
// Decode BDS2,0 carried in Comm-B or ES
static void decodeBDS20(struct modesMessage *mm)
{
uint32_t chars1, chars2;
unsigned char *msg = mm->msg;
chars1 = getbits(msg, 41, 64);
chars2 = getbits(msg, 65, 88);
// A common failure mode seems to be to intermittently send
// all zeros. Catch that here.
if (chars1 == 0 && chars2 == 0)
return;
mm->callsign_valid = 1;
mm->callsign[3] = ais_charset[chars1 & 0x3F]; chars1 = chars1 >> 6;
mm->callsign[2] = ais_charset[chars1 & 0x3F]; chars1 = chars1 >> 6;
mm->callsign[1] = ais_charset[chars1 & 0x3F]; chars1 = chars1 >> 6;
mm->callsign[0] = ais_charset[chars1 & 0x3F];
mm->callsign[7] = ais_charset[chars2 & 0x3F]; chars2 = chars2 >> 6;
mm->callsign[6] = ais_charset[chars2 & 0x3F]; chars2 = chars2 >> 6;
mm->callsign[5] = ais_charset[chars2 & 0x3F]; chars2 = chars2 >> 6;
mm->callsign[4] = ais_charset[chars2 & 0x3F];
mm->callsign[8] = '\0';
}
static void decodeExtendedSquitter(struct modesMessage *mm)
{
unsigned char *me = mm->ME;
int metype = mm->metype = getbits(me, 1, 5);
int mesub = mm->mesub = (metype == 29 ? getbits(me, 6, 7) : getbits(me, 6, 8)); // Extended squitter message subtype
int check_imf = 0;
// Check CF on DF18 to work out the format of the ES and whether we need to look for an IMF bit
if (mm->msgtype == 18) {
switch (mm->CF) {
case 0: // ADS-B ES/NT devices that report the ICAO 24-bit address in the AA field
break;
case 1: // Reserved for ADS-B for ES/NT devices that use other addressing techniques in the AA field
mm->addr |= MODES_NON_ICAO_ADDRESS;
break;
case 2: // Fine TIS-B message (formats are close enough to DF17 for our purposes)
mm->source = SOURCE_TISB;
check_imf = 1;
break;
case 3: // Coarse TIS-B airborne position and velocity.
// TODO: decode me.
// For now we only look at the IMF bit.
mm->source = SOURCE_TISB;
if (getbit(me, 1))
mm->addr |= MODES_NON_ICAO_ADDRESS;
return;
case 5: // TIS-B messages that relay ADS-B Messages using anonymous 24-bit addresses (format not explicitly defined, but it seems to follow DF17)
mm->source = SOURCE_TISB;
mm->addr |= MODES_NON_ICAO_ADDRESS;
break;
case 6: // ADS-B rebroadcast using the same type codes and message formats as defined for DF = 17 ADS-B messages
check_imf = 1;
break;
default: // All others, we don't know the format.
mm->addr |= MODES_NON_ICAO_ADDRESS; // assume non-ICAO
return;
}
}
switch (metype) {
case 1: case 2: case 3: case 4: {
// Aircraft Identification and Category
uint32_t chars1, chars2;
chars1 = getbits(me, 9, 32);
chars2 = getbits(me, 33, 56);
// A common failure mode seems to be to intermittently send
// all zeros. Catch that here.
if (chars1 != 0 || chars2 != 0) {
mm->callsign_valid = 1;
mm->callsign[3] = ais_charset[chars1 & 0x3F]; chars1 = chars1 >> 6;
mm->callsign[2] = ais_charset[chars1 & 0x3F]; chars1 = chars1 >> 6;
mm->callsign[1] = ais_charset[chars1 & 0x3F]; chars1 = chars1 >> 6;
mm->callsign[0] = ais_charset[chars1 & 0x3F];
mm->callsign[7] = ais_charset[chars2 & 0x3F]; chars2 = chars2 >> 6;
mm->callsign[6] = ais_charset[chars2 & 0x3F]; chars2 = chars2 >> 6;
mm->callsign[5] = ais_charset[chars2 & 0x3F]; chars2 = chars2 >> 6;
mm->callsign[4] = ais_charset[chars2 & 0x3F];
mm->callsign[8] = '\0';
}
mm->category = ((0x0E - metype) << 4) | mesub;
mm->category_valid = 1;
break;
}
case 19: { // Airborne Velocity Message
if (check_imf && getbit(me, 9))
mm->addr |= MODES_NON_ICAO_ADDRESS;
if ( (mesub >= 1) && (mesub <= 4) ) {
int vert_rate = getbits(me, 38, 46);
if (vert_rate) {
--vert_rate;
if (getbit(me, 37)) {
vert_rate = 0 - vert_rate;
}
mm->vert_rate = vert_rate * 64;
mm->vert_rate_valid = 1;
}
mm->vert_rate_source = (getbit(me, 36) ? ALTITUDE_GNSS : ALTITUDE_BARO);
}
if ((mesub == 1) || (mesub == 2)) {
unsigned ew_raw = getbits(me, 15, 24);
unsigned ns_raw = getbits(me, 26, 35);
if (ew_raw && ns_raw) {
int ew_vel = (ew_raw - 1) * (getbit(me, 14) ? -1 : 1) * ((mesub == 2) ? 4 : 1);
int ns_vel = (ns_raw - 1) * (getbit(me, 25) ? -1 : 1) * ((mesub == 2) ? 4 : 1);
// Compute velocity and angle from the two speed components
mm->speed = (unsigned) sqrt((ns_vel * ns_vel) + (ew_vel * ew_vel) + 0.5);
mm->speed_valid = 1;
if (mm->speed) {
int heading = (int) (atan2(ew_vel, ns_vel) * 180.0 / M_PI + 0.5);
// We don't want negative values but a 0-360 scale
if (heading < 0)
heading += 360;
mm->heading = (unsigned) heading;
mm->heading_source = HEADING_TRUE;
mm->heading_valid = 1;
}
mm->speed_source = SPEED_GROUNDSPEED;
}
} else if (mesub == 3 || mesub == 4) {
unsigned airspeed = getbits(me, 26, 35);
if (airspeed) {
--airspeed;
if (mesub == 4) { // If (supersonic) unit is 4 kts
airspeed *= 4;
}
mm->speed = airspeed;
mm->speed_source = getbit(me, 25) ? SPEED_TAS : SPEED_IAS;
mm->speed_valid = 1;
}
if (getbit(me, 14)) {
mm->heading = getbits(me, 15, 24);
mm->heading_source = HEADING_MAGNETIC;
mm->heading_valid = 1;
}
}
unsigned raw_delta = getbits(me, 50, 56);
if (raw_delta) {
mm->gnss_delta_valid = 1;
mm->gnss_delta = (raw_delta - 1) * (getbit(me, 49) ? -25 : 25);
}
break;
}
case 5: case 6: case 7: case 8: {
// Ground position
int movement;
if (check_imf && getbit(me, 21))
mm->addr |= MODES_NON_ICAO_ADDRESS;
mm->airground = AG_GROUND; // definitely.
mm->cpr_lat = getbits(me, 23, 39);
mm->cpr_lon = getbits(me, 40, 56);
mm->cpr_odd = getbit(me, 22);
mm->cpr_nucp = (14 - metype);
mm->cpr_valid = 1;
movement = getbits(me, 6, 12);
if ((movement) && (movement < 125)) {
mm->speed_valid = 1;
mm->speed = decodeMovementField(movement);
mm->speed_source = SPEED_GROUNDSPEED;
}
if (getbit(me, 13)) {
mm->heading_valid = 1;
mm->heading_source = HEADING_TRUE;
mm->heading = getbits(me, 14, 20) * 360 / 128;
}
break;
}
case 0: // Airborne position, baro altitude only
case 9: case 10: case 11: case 12: case 13: case 14: case 15: case 16: case 17: case 18: // Airborne position, baro
case 20: case 21: case 22: { // Airborne position, GNSS altitude (HAE or MSL)
int AC12Field = getbits(me, 9, 20);
if (check_imf && getbit(me, 8))
mm->addr |= MODES_NON_ICAO_ADDRESS;
if (metype == 0) {
mm->cpr_nucp = 0;
} else {
// Catch some common failure modes and don't mark them as valid
// (so they won't be used for positioning)
mm->cpr_lat = getbits(me, 23, 39);
mm->cpr_lon = getbits(me, 40, 56);
if (AC12Field == 0 && mm->cpr_lon == 0 && (mm->cpr_lat & 0x0fff) == 0 && mm->metype == 15) {
// Seen from at least:
// 400F3F (Eurocopter ECC155 B1) - Bristow Helicopters
// 4008F3 (BAE ATP) - Atlantic Airlines
// 400648 (BAE ATP) - Atlantic Airlines
// altitude == 0, longitude == 0, type == 15 and zeros in latitude LSB.
// Can alternate with valid reports having type == 14
Modes.stats_current.cpr_filtered++;
} else {
// Otherwise, assume it's valid.
mm->cpr_valid = 1;
mm->cpr_odd = getbit(me, 22);
if (metype == 18 || metype == 22)
mm->cpr_nucp = 0;
else if (metype < 18)
mm->cpr_nucp = (18 - metype);
else
mm->cpr_nucp = (29 - metype);
}
}
if (AC12Field) {// Only attempt to decode if a valid (non zero) altitude is present
mm->altitude = decodeAC12Field(AC12Field, &mm->altitude_unit);
if (mm->altitude != INVALID_ALTITUDE) {
mm->altitude_valid = 1;
}
mm->altitude_source = (metype == 20 || metype == 21 || metype == 22) ? ALTITUDE_GNSS : ALTITUDE_BARO;
}
break;
}
case 23: { // Test message
if (mesub == 7) { // (see 1090-WP-15-20)
int ID13Field = getbits(me, 9, 21);
if (ID13Field) {
mm->squawk_valid = 1;
mm->squawk = decodeID13Field(ID13Field);
}
}
break;
}
case 24: // Reserved for Surface System Status
break;
case 28: { // Extended Squitter Aircraft Status
if (mesub == 1) { // Emergency status squawk field
int ID13Field = getbits(me, 12, 24);
if (ID13Field) {
mm->squawk_valid = 1;
mm->squawk = decodeID13Field(ID13Field);
}
if (check_imf && getbit(me, 56))
mm->addr |= MODES_NON_ICAO_ADDRESS;
}
break;
}
case 29: // Aircraft Trajectory Intent
if (check_imf && getbit(me, 51))
mm->addr |= MODES_NON_ICAO_ADDRESS;
if (mesub == 0) { // Target state and status, V1
// TODO: need RTCA/DO-260A
} else if (mesub == 1) { // Target state and status, V2
mm->tss.valid = 1;
mm->tss.sil_type = getbit(me, 8) ? SIL_PER_SAMPLE : SIL_PER_HOUR;
mm->tss.altitude_type = getbit(me, 9) ? TSS_ALTITUDE_FMS : TSS_ALTITUDE_MCP;
unsigned alt_bits = getbits(me, 10, 20);
if (alt_bits == 0) {
mm->tss.altitude_valid = 0;
} else {
mm->tss.altitude_valid = 1;
mm->tss.altitude = (alt_bits - 1) * 32;
}
unsigned baro_bits = getbits(me, 21, 29);
if (baro_bits == 0) {
mm->tss.baro_valid = 0;
} else {
mm->tss.baro_valid = 1;
mm->tss.baro = 800.0 + (baro_bits - 1) * 0.8;
}
mm->tss.heading_valid = getbit(me, 30);
if (mm->tss.heading_valid) {
// two's complement -180..+180, which is conveniently
// also the same as unsigned 0..360
mm->tss.heading = getbits(me, 31, 39) * 180 / 256;
}
mm->tss.nac_p = getbits(me, 40, 43);
mm->tss.nic_baro = getbit(me, 44);
mm->tss.sil = getbits(me, 45, 46);
mm->tss.mode_valid = getbit(me, 47);
if (mm->tss.mode_valid) {
mm->tss.mode_autopilot = getbit(me, 48);
mm->tss.mode_vnav = getbit(me, 49);
mm->tss.mode_alt_hold = getbit(me, 50);
mm->tss.mode_approach = getbit(me, 52);
}
mm->tss.acas_operational = getbit(me, 53);
}
break;
case 30: // Aircraft Operational Coordination
break;
case 31: // Aircraft Operational Status
if (check_imf && getbit(me, 56))
mm->addr |= MODES_NON_ICAO_ADDRESS;
if (mm->mesub == 0 || mm->mesub == 1) {
mm->opstatus.valid = 1;
mm->opstatus.version = getbits(me, 41, 43);
switch (mm->opstatus.version) {
case 0:
break;
case 1:
if (getbits(me, 25, 26) == 0) {
mm->opstatus.om_acas_ra = getbit(me, 27);
mm->opstatus.om_ident = getbit(me, 28);
mm->opstatus.om_atc = getbit(me, 29);
}
if (mm->mesub == 0 && getbits(me, 9, 10) == 0 && getbits(me, 13, 14) == 0) {
// airborne
mm->opstatus.cc_acas = !getbit(me, 11);
mm->opstatus.cc_cdti = getbit(me, 12);
mm->opstatus.cc_arv = getbit(me, 15);
mm->opstatus.cc_ts = getbit(me, 16);
mm->opstatus.cc_tc = getbits(me, 17, 18);
} else if (mm->mesub == 1 && getbits(me, 9, 10) == 0 && getbits(me, 13, 14) == 0) {
// surface
mm->opstatus.cc_poa = getbit(me, 11);
mm->opstatus.cc_cdti = getbit(me, 12);
mm->opstatus.cc_b2_low = getbit(me, 15);
mm->opstatus.cc_lw_valid = 1;
mm->opstatus.cc_lw = getbits(me, 21, 24);
}
mm->opstatus.nic_supp_a = getbit(me, 44);
mm->opstatus.nac_p = getbits(me, 45, 48);
mm->opstatus.sil = getbits(me, 51, 52);
if (mm->mesub == 0) {
mm->opstatus.nic_baro = getbit(me, 53);
} else {
mm->opstatus.track_angle = getbit(me, 53) ? ANGLE_TRACK : ANGLE_HEADING;
}
mm->opstatus.hrd = getbit(me, 54) ? HEADING_MAGNETIC : HEADING_TRUE;
break;
case 2:
default:
if (getbits(me, 25, 26) == 0) {
mm->opstatus.om_acas_ra = getbit(me, 27);
mm->opstatus.om_ident = getbit(me, 28);
mm->opstatus.om_atc = getbit(me, 29);
mm->opstatus.om_saf = getbit(me, 30);
mm->opstatus.om_sda = getbits(me, 31, 32);
}
if (mm->mesub == 0 && getbits(me, 9, 10) == 0 && getbits(me, 13, 14) == 0) {
// airborne
mm->opstatus.cc_acas = getbit(me, 11);
mm->opstatus.cc_1090_in = getbit(me, 12);
mm->opstatus.cc_arv = getbit(me, 15);
mm->opstatus.cc_ts = getbit(me, 16);
mm->opstatus.cc_tc = getbits(me, 17, 18);
mm->opstatus.cc_uat_in = getbit(me, 19);
} else if (mm->mesub == 1 && getbits(me, 9, 10) == 0 && getbits(me, 13, 14) == 0) {
// surface
mm->opstatus.cc_poa = getbit(me, 11);
mm->opstatus.cc_1090_in = getbit(me, 12);
mm->opstatus.cc_b2_low = getbit(me, 15);
mm->opstatus.cc_uat_in = getbit(me, 16);
mm->opstatus.cc_nac_v = getbits(me, 17, 19);
mm->opstatus.cc_nic_supp_c = getbit(me, 20);
mm->opstatus.cc_lw_valid = 1;
mm->opstatus.cc_lw = getbits(me, 21, 24);
mm->opstatus.cc_antenna_offset = getbits(me, 33, 40);
}
mm->opstatus.nic_supp_a = getbit(me, 44);
mm->opstatus.nac_p = getbits(me, 45, 48);
mm->opstatus.sil = getbits(me, 51, 52);
if (mm->mesub == 0) {
mm->opstatus.gva = getbits(me, 49, 50);
mm->opstatus.nic_baro = getbit(me, 53);
} else {
mm->opstatus.track_angle = getbit(me, 53) ? ANGLE_TRACK : ANGLE_HEADING;
}
mm->opstatus.hrd = getbit(me, 54) ? HEADING_MAGNETIC : HEADING_TRUE;
mm->opstatus.sil_type = getbit(me, 55) ? SIL_PER_SAMPLE : SIL_PER_HOUR;
break;
}
}
break;
default:
break;
}
}
static void decodeCommB(struct modesMessage *mm)
{
unsigned char *msg = mm->msg;
// This is a bit hairy as we don't know what the requested register was
if (getbits(msg, 33, 40) == 0x20) { // BDS 2,0 Aircraft Identification
decodeBDS20(mm);
}
}
static const char *df_names[33] = {
/* 0 */ "Short Air-Air Surveillance",
/* 1 */ NULL,
/* 2 */ NULL,
/* 3 */ NULL,
/* 4 */ "Survelliance, Altitude Reply",
/* 5 */ "Survelliance, Identity Reply",
/* 6 */ NULL,
/* 7 */ NULL,
/* 8 */ NULL,
/* 9 */ NULL,
/* 10 */ NULL,
/* 11 */ "All Call Reply",
/* 12 */ NULL,
/* 13 */ NULL,
/* 14 */ NULL,
/* 15 */ NULL,
/* 16 */ "Long Air-Air ACAS",
/* 17 */ "Extended Squitter",
/* 18 */ "Extended Squitter (Non-Transponder)",
/* 19 */ "Extended Squitter (Military)",
/* 20 */ "Comm-B, Altitude Reply",
/* 21 */ "Comm-B, Identity Reply",
/* 22 */ "Military Use",
/* 23 */ NULL,
/* 24 */ "Comm-D Extended Length Message",
/* 25 */ "Comm-D Extended Length Message",
/* 26 */ "Comm-D Extended Length Message",
/* 27 */ "Comm-D Extended Length Message",
/* 28 */ "Comm-D Extended Length Message",
/* 29 */ "Comm-D Extended Length Message",
/* 30 */ "Comm-D Extended Length Message",
/* 31 */ "Comm-D Extended Length Message",
/* 32 */ "Mode A/C Reply",
};
static const char *df_to_string(unsigned df) {
if (df > 32)
return "out of range";
if (!df_names[df])
return "reserved";
return df_names[df];
}
static const char *altitude_unit_to_string(altitude_unit_t unit) {
switch (unit) {
case UNIT_FEET:
return "ft";
case UNIT_METERS:
return "m";
default:
return "(unknown altitude unit)";
}
}
static const char *altitude_source_to_string(altitude_source_t source) {
switch (source) {
case ALTITUDE_BARO:
return "barometric";
case ALTITUDE_GNSS:
return "GNSS";
default:
return "(unknown altitude source)";
}
}
static const char *airground_to_string(airground_t airground) {
switch (airground) {
case AG_GROUND:
return "ground";
case AG_AIRBORNE:
return "airborne";
case AG_INVALID:
return "invalid";
case AG_UNCERTAIN:
return "airborne?";
default:
return "(unknown airground state)";
}
}
static const char *speed_source_to_string(speed_source_t speed) {
switch (speed) {
case SPEED_GROUNDSPEED:
return "groundspeed";
case SPEED_IAS:
return "IAS";
case SPEED_TAS:
return "TAS";
default:
return "(unknown speed type)";
}
}
static void print_hex_bytes(unsigned char *data, size_t len) {
size_t i;
for (i = 0; i < len; ++i) {
printf("%02X", (unsigned)data[i]);
}
}
static int esTypeHasSubtype(unsigned metype)
{
if (metype <= 18) {
return 0;
}
if (metype >= 20 && metype <= 22) {
return 0;
}
return 1;
}
static const char *esTypeName(unsigned metype, unsigned mesub)
{
switch (metype) {
case 0:
return "No position information (airborne or surface)";
case 1: case 2: case 3: case 4:
return "Aircraft identification and category";
case 5: case 6: case 7: case 8:
return "Surface position";
case 9: case 10: case 11: case 12:
case 13: case 14: case 15: case 16:
case 17: case 18:
return "Airborne position (barometric altitude)";
case 19:
switch (mesub) {
case 1:
return "Airborne velocity over ground, subsonic";
case 2:
return "Airborne velocity over ground, supersonic";
case 3:
return "Airspeed and heading, subsonic";
case 4:
return "Airspeed and heading, supersonic";
default:
return "Unknown";
}
case 20: case 21: case 22:
return "Airborne position (GNSS altitude)";
case 23:
switch (mesub) {
case 0:
return "Test message";
case 7:
return "National use / 1090-WP-15-20 Mode A squawk";
default:
return "Unknown";
}
case 24:
return "Reserved for surface system status";
case 27:
return "Reserved for trajectory change";
case 28:
switch (mesub) {
case 1:
return "Emergency/priority status";
case 2:
return "ACAS RA broadcast";
default:
return "Unknown";
}
case 29:
switch (mesub) {
case 1:
return "Target state and status";
default:
return "Unknown";
}
case 31: // Aircraft Operational Status
switch (mesub) {
case 0:
return "Aircraft operational status (airborne)";
case 1:
return "Aircraft operational status (surface)";
default:
return "Unknown";
}
default:
return "Unknown";
}
}
void displayModesMessage(struct modesMessage *mm) {
int j;
// Handle only addresses mode first.
if (Modes.onlyaddr) {
printf("%06x\n", mm->addr);
return; // Enough for --onlyaddr mode
}
// Show the raw message.
if (Modes.mlat && mm->timestampMsg) {
printf("@%012" PRIX64, mm->timestampMsg);
} else
printf("*");
for (j = 0; j < mm->msgbits/8; j++) printf("%02x", mm->msg[j]);
printf(";\n");
if (Modes.raw) {
fflush(stdout); // Provide data to the reader ASAP
return; // Enough for --raw mode
}
if (mm->msgtype < 32)
printf("CRC: %06x\n", mm->crc);
if (mm->correctedbits != 0)
printf("No. of bit errors fixed: %d\n", mm->correctedbits);
if (mm->signalLevel > 0)
printf("RSSI: %.1f dBFS\n", 10 * log10(mm->signalLevel));
if (mm->score)
printf("Score: %d\n", mm->score);
if (mm->timestampMsg) {
if (mm->timestampMsg == MAGIC_MLAT_TIMESTAMP)
printf("This is a synthetic MLAT message.\n");
else
printf("Time: %.2fus\n", mm->timestampMsg / 12.0);
}
switch (mm->msgtype) {
case 0:
printf("DF:0 addr:%06X VS:%u CC:%u SL:%u RI:%u AC:%u\n",
mm->addr, mm->VS, mm->CC, mm->SL, mm->RI, mm->AC);
break;
case 4:
printf("DF:4 addr:%06X FS:%u DR:%u UM:%u AC:%u\n",
mm->addr, mm->FS, mm->DR, mm->UM, mm->AC);
break;
case 5:
printf("DF:5 addr:%06X FS:%u DR:%u UM:%u ID:%u\n",
mm->addr, mm->FS, mm->DR, mm->UM, mm->ID);
break;
case 11:
printf("DF:11 AA:%06X IID:%u CA:%u\n",
mm->AA, mm->IID, mm->CA);
break;
case 16:
printf("DF:16 addr:%06x VS:%u SL:%u RI:%u AC:%u MV:",
mm->addr, mm->VS, mm->SL, mm->RI, mm->AC);
print_hex_bytes(mm->MV, sizeof(mm->MV));
printf("\n");
break;
case 17:
printf("DF:17 AA:%06X CA:%u ME:",
mm->AA, mm->CA);
print_hex_bytes(mm->ME, sizeof(mm->ME));
printf("\n");
break;
case 18:
printf("DF:18 AA:%06X CF:%u ME:",
mm->AA, mm->CF);
print_hex_bytes(mm->ME, sizeof(mm->ME));
printf("\n");
break;
case 20:
printf("DF:20 addr:%06X FS:%u DR:%u UM:%u AC:%u MB:",
mm->addr, mm->FS, mm->DR, mm->UM, mm->AC);
print_hex_bytes(mm->MB, sizeof(mm->MB));
printf("\n");
break;
case 21:
printf("DF:21 addr:%06x FS:%u DR:%u UM:%u ID:%u MB:",
mm->addr, mm->FS, mm->DR, mm->UM, mm->ID);
print_hex_bytes(mm->MB, sizeof(mm->MB));
printf("\n");
break;
case 24:
case 25:
case 26:
case 27:
case 28:
case 29:
case 30:
case 31:
printf("DF:24 addr:%06x KE:%u ND:%u MD:",
mm->addr, mm->KE, mm->ND);
print_hex_bytes(mm->MD, sizeof(mm->MD));
printf("\n");
break;
}
printf(" %s", df_to_string(mm->msgtype));
if (mm->msgtype == 17 || mm->msgtype == 18) {
if (esTypeHasSubtype(mm->metype)) {
printf(" %s (%u/%u)",
esTypeName(mm->metype, mm->mesub),
mm->metype,
mm->mesub);
} else {
printf(" %s (%u)",
esTypeName(mm->metype, mm->mesub),
mm->metype);
}
}
printf("\n");
if (mm->addr & MODES_NON_ICAO_ADDRESS) {
printf(" Other Address: %06X\n", mm->addr);
} else {
printf(" ICAO Address: %06X\n", mm->addr);
}
if (mm->airground != AG_INVALID) {
printf(" Air/Ground: %s\n",
airground_to_string(mm->airground));
}
if (mm->altitude_valid) {
printf(" Altitude: %d %s %s\n",
mm->altitude,
altitude_unit_to_string(mm->altitude_unit),
altitude_source_to_string(mm->altitude_source));
}
if (mm->gnss_delta_valid) {
printf(" GNSS delta: %d ft\n",
mm->gnss_delta);
}
if (mm->heading_valid) {
printf(" Heading: %u\n", mm->heading);
}
if (mm->speed_valid) {
printf(" Speed: %u kt %s\n",
mm->speed,
speed_source_to_string(mm->speed_source));
}
if (mm->vert_rate_valid) {
printf(" Vertical rate: %d ft/min %s\n",
mm->vert_rate,
altitude_source_to_string(mm->vert_rate_source));
}
if (mm->squawk_valid) {
printf(" Squawk: %04x\n",
mm->squawk);
}
if (mm->callsign_valid) {
printf(" Ident: %s\n",
mm->callsign);
}
if (mm->category_valid) {
printf(" Category: %02X\n",
mm->category);
}
if (mm->msgtype == 17 || mm->msgtype == 18) {
}
if (mm->cpr_valid) {
printf(" CPR odd flag: %s\n"
" CPR NUCp/NIC: %u\n",
mm->cpr_odd ? "odd" : "even",
mm->cpr_nucp);
if (mm->cpr_decoded) {
printf(" CPR latitude: %.5f (%u)\n"
" CPR longitude: %.5f (%u)\n"
" CPR decoding: %s\n",
mm->decoded_lat,
mm->cpr_lat,
mm->decoded_lon,
mm->cpr_lon,
mm->cpr_relative ? "local" : "global");
} else {
printf(" CPR latitude: (%u)\n"
" CPR longitude: (%u)\n"
" CPR decoding: none\n",
mm->cpr_lat,
mm->cpr_lon);
}
}
if (mm->opstatus.valid) {
printf(" Aircraft Operational Status:\n");
printf(" Version: %d\n", mm->opstatus.version);
printf(" Capability classes: ");
if (mm->opstatus.cc_acas) printf("ACAS ");
if (mm->opstatus.cc_cdti) printf("CDTI ");
if (mm->opstatus.cc_1090_in) printf("1090IN ");
if (mm->opstatus.cc_arv) printf("ARV ");
if (mm->opstatus.cc_ts) printf("TS ");
if (mm->opstatus.cc_tc) printf("TC=%d ", mm->opstatus.cc_tc);
if (mm->opstatus.cc_uat_in) printf("UATIN ");
if (mm->opstatus.cc_poa) printf("POA ");
if (mm->opstatus.cc_b2_low) printf("B2-LOW ");
if (mm->opstatus.cc_nac_v) printf("NACv=%d ", mm->opstatus.cc_nac_v);
if (mm->opstatus.cc_nic_supp_c) printf("NIC-C=1 ");
if (mm->opstatus.cc_lw_valid) printf("L/W=%d ", mm->opstatus.cc_lw);
if (mm->opstatus.cc_antenna_offset) printf("GPS-OFFSET=%d ", mm->opstatus.cc_antenna_offset);
printf("\n");
printf(" Operational modes: ");
if (mm->opstatus.om_acas_ra) printf("ACASRA ");
if (mm->opstatus.om_ident) printf("IDENT ");
if (mm->opstatus.om_atc) printf("ATC ");
if (mm->opstatus.om_saf) printf("SAF ");
if (mm->opstatus.om_sda) printf("SDA=%d ", mm->opstatus.om_sda);
printf("\n");
if (mm->opstatus.nic_supp_a) printf(" NIC-A: %d\n", mm->opstatus.nic_supp_a);
if (mm->opstatus.nac_p) printf(" NACp: %d\n", mm->opstatus.nac_p);
if (mm->opstatus.gva) printf(" GVA: %d\n", mm->opstatus.gva);
if (mm->opstatus.sil) printf(" SIL: %d (%s)\n", mm->opstatus.sil, (mm->opstatus.sil_type == SIL_PER_HOUR ? "per hour" : "per sample"));
if (mm->opstatus.nic_baro) printf(" NICbaro: %d\n", mm->opstatus.nic_baro);
if (mm->mesub == 1)
printf(" Heading type: %s\n", (mm->opstatus.track_angle == ANGLE_HEADING ? "heading" : "track angle"));
printf(" Heading reference: %s\n", (mm->opstatus.hrd == HEADING_TRUE ? "true north" : "magnetic north"));
}
if (mm->tss.valid) {
printf(" Target State and Status:\n");
if (mm->tss.altitude_valid)
printf(" Target altitude: %s, %d ft\n", (mm->tss.altitude_type == TSS_ALTITUDE_MCP ? "MCP" : "FMS"), mm->tss.altitude);
if (mm->tss.baro_valid)
printf(" Altimeter setting: %.1f millibars\n", mm->tss.baro);
if (mm->tss.heading_valid)
printf(" Target heading: %d\n", mm->tss.heading);
if (mm->tss.mode_valid) {
printf(" Active modes: ");
if (mm->tss.mode_autopilot) printf("autopilot ");
if (mm->tss.mode_vnav) printf("VNAV ");
if (mm->tss.mode_alt_hold) printf("altitude-hold ");
if (mm->tss.mode_approach) printf("approach ");
printf("\n");
}
printf(" ACAS: %s\n", mm->tss.acas_operational ? "operational" : "NOT operational");
printf(" NACp: %d\n", mm->tss.nac_p);
printf(" NICbaro: %d\n", mm->tss.nic_baro);
printf(" SIL: %d (%s)\n", mm->tss.sil, (mm->opstatus.sil_type == SIL_PER_HOUR ? "per hour" : "per sample"));
}
printf("\n");
fflush(stdout);
}
//
//=========================================================================
//
// When a new message is available, because it was decoded from the RTL device,
// file, or received in the TCP input port, or any other way we can receive a
// decoded message, we call this function in order to use the message.
//
// Basically this function passes a raw message to the upper layers for further
// processing and visualization
//
void useModesMessage(struct modesMessage *mm) {
struct aircraft *a;
++Modes.stats_current.messages_total;
// Track aircraft state
a = trackUpdateFromMessage(mm);
// In non-interactive non-quiet mode, display messages on standard output
if (!Modes.interactive && !Modes.quiet && (!Modes.show_only || mm->addr == Modes.show_only)) {
displayModesMessage(mm);
}
// Feed output clients.
// If in --net-verbatim mode, do this for all messages.
// Otherwise, apply a sanity-check filter and only
// forward messages when we have seen two of them.
if (Modes.net) {
if (Modes.net_verbatim || mm->msgtype == 32) {
// Unconditionally send
modesQueueOutput(mm, a);
} else if (a->messages > 1) {
// If this is the second message, and we
// squelched the first message, then re-emit the
// first message now.
if (!Modes.net_verbatim && a->messages == 2) {
modesQueueOutput(&a->first_message, a);
}
modesQueueOutput(mm, a);
}
}
}
//
// ===================== Mode S detection and decoding ===================
//