386 lines
14 KiB
C
386 lines
14 KiB
C
// dump1090, a Mode S messages decoder for RTLSDR devices.
|
|
//
|
|
// Copyright (C) 2012 by Salvatore Sanfilippo <antirez@gmail.com>
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
|
|
#include "dump1090.h"
|
|
//
|
|
// ===================== Mode A/C detection and decoding ===================
|
|
//
|
|
//
|
|
// This table is used to build the Mode A/C variable called ModeABits.Each
|
|
// bit period is inspected, and if it's value exceeds the threshold limit,
|
|
// then the value in this table is or-ed into ModeABits.
|
|
//
|
|
// At the end of message processing, ModeABits will be the decoded ModeA value.
|
|
//
|
|
// We can also flag noise in bits that should be zeros - the xx bits. Noise in
|
|
// these bits cause bits (31-16) in ModeABits to be set. Then at the end of message
|
|
// processing we can test for errors by looking at these bits.
|
|
//
|
|
uint32_t ModeABitTable[24] = {
|
|
0x00000000, // F1 = 1
|
|
0x00000010, // C1
|
|
0x00001000, // A1
|
|
0x00000020, // C2
|
|
0x00002000, // A2
|
|
0x00000040, // C4
|
|
0x00004000, // A4
|
|
0x40000000, // xx = 0 Set bit 30 if we see this high
|
|
0x00000100, // B1
|
|
0x00000001, // D1
|
|
0x00000200, // B2
|
|
0x00000002, // D2
|
|
0x00000400, // B4
|
|
0x00000004, // D4
|
|
0x00000000, // F2 = 1
|
|
0x08000000, // xx = 0 Set bit 27 if we see this high
|
|
0x04000000, // xx = 0 Set bit 26 if we see this high
|
|
0x00000080, // SPI
|
|
0x02000000, // xx = 0 Set bit 25 if we see this high
|
|
0x01000000, // xx = 0 Set bit 24 if we see this high
|
|
0x00800000, // xx = 0 Set bit 23 if we see this high
|
|
0x00400000, // xx = 0 Set bit 22 if we see this high
|
|
0x00200000, // xx = 0 Set bit 21 if we see this high
|
|
0x00100000, // xx = 0 Set bit 20 if we see this high
|
|
};
|
|
//
|
|
// This table is used to produce an error variable called ModeAErrs.Each
|
|
// inter-bit period is inspected, and if it's value falls outside of the
|
|
// expected range, then the value in this table is or-ed into ModeAErrs.
|
|
//
|
|
// At the end of message processing, ModeAErrs will indicate if we saw
|
|
// any inter-bit anomolies, and the bits that are set will show which
|
|
// bits had them.
|
|
//
|
|
uint32_t ModeAMidTable[24] = {
|
|
0x80000000, // F1 = 1 Set bit 31 if we see F1_C1 error
|
|
0x00000010, // C1 Set bit 4 if we see C1_A1 error
|
|
0x00001000, // A1 Set bit 12 if we see A1_C2 error
|
|
0x00000020, // C2 Set bit 5 if we see C2_A2 error
|
|
0x00002000, // A2 Set bit 13 if we see A2_C4 error
|
|
0x00000040, // C4 Set bit 6 if we see C3_A4 error
|
|
0x00004000, // A4 Set bit 14 if we see A4_xx error
|
|
0x40000000, // xx = 0 Set bit 30 if we see xx_B1 error
|
|
0x00000100, // B1 Set bit 8 if we see B1_D1 error
|
|
0x00000001, // D1 Set bit 0 if we see D1_B2 error
|
|
0x00000200, // B2 Set bit 9 if we see B2_D2 error
|
|
0x00000002, // D2 Set bit 1 if we see D2_B4 error
|
|
0x00000400, // B4 Set bit 10 if we see B4_D4 error
|
|
0x00000004, // D4 Set bit 2 if we see D4_F2 error
|
|
0x20000000, // F2 = 1 Set bit 29 if we see F2_xx error
|
|
0x08000000, // xx = 0 Set bit 27 if we see xx_xx error
|
|
0x04000000, // xx = 0 Set bit 26 if we see xx_SPI error
|
|
0x00000080, // SPI Set bit 15 if we see SPI_xx error
|
|
0x02000000, // xx = 0 Set bit 25 if we see xx_xx error
|
|
0x01000000, // xx = 0 Set bit 24 if we see xx_xx error
|
|
0x00800000, // xx = 0 Set bit 23 if we see xx_xx error
|
|
0x00400000, // xx = 0 Set bit 22 if we see xx_xx error
|
|
0x00200000, // xx = 0 Set bit 21 if we see xx_xx error
|
|
0x00100000, // xx = 0 Set bit 20 if we see xx_xx error
|
|
};
|
|
//
|
|
// The "off air" format is,,
|
|
// _F1_C1_A1_C2_A2_C4_A4_xx_B1_D1_B2_D2_B4_D4_F2_xx_xx_SPI_
|
|
//
|
|
// Bit spacing is 1.45uS, with 0.45uS high, and 1.00us low. This is a problem
|
|
// because we ase sampling at 2Mhz (500nS) so we are below Nyquist.
|
|
//
|
|
// The bit spacings are..
|
|
// F1 : 0.00,
|
|
// 1.45, 2.90, 4.35, 5.80, 7.25, 8.70,
|
|
// X : 10.15,
|
|
// : 11.60, 13.05, 14.50, 15.95, 17.40, 18.85,
|
|
// F2 : 20.30,
|
|
// X : 21.75, 23.20, 24.65
|
|
//
|
|
// This equates to the following sample point centers at 2Mhz.
|
|
// [ 0.0],
|
|
// [ 2.9], [ 5.8], [ 8.7], [11.6], [14.5], [17.4],
|
|
// [20.3],
|
|
// [23.2], [26.1], [29.0], [31.9], [34.8], [37.7]
|
|
// [40.6]
|
|
// [43.5], [46.4], [49.3]
|
|
//
|
|
// We know that this is a supposed to be a binary stream, so the signal
|
|
// should either be a 1 or a 0. Therefore, any energy above the noise level
|
|
// in two adjacent samples must be from the same pulse, so we can simply
|
|
// add the values together..
|
|
//
|
|
int detectModeA(uint16_t *m, struct modesMessage *mm)
|
|
{
|
|
int j, lastBitWasOne;
|
|
int ModeABits = 0;
|
|
int ModeAErrs = 0;
|
|
int byte, bit;
|
|
int thisSample, lastBit, lastSpace = 0;
|
|
int m0, m1, m2, m3, mPhase;
|
|
int n0, n1, n2 ,n3;
|
|
int F1_sig, F1_noise;
|
|
int F2_sig, F2_noise;
|
|
int fSig, fNoise, fLevel, fLoLo;
|
|
|
|
// m[0] contains the energy from 0 -> 499 nS
|
|
// m[1] contains the energy from 500 -> 999 nS
|
|
// m[2] contains the energy from 1000 -> 1499 nS
|
|
// m[3] contains the energy from 1500 -> 1999 nS
|
|
//
|
|
// We are looking for a Frame bit (F1) whose width is 450nS, followed by
|
|
// 1000nS of quiet.
|
|
//
|
|
// The width of the frame bit is 450nS, which is 90% of our sample rate.
|
|
// Therefore, in an ideal world, all the energy for the frame bit will be
|
|
// in a single sample, preceeded by (at least) one zero, and followed by
|
|
// two zeros, Best case we can look for ...
|
|
//
|
|
// 0 - 1 - 0 - 0
|
|
//
|
|
// However, our samples are not phase aligned, so some of the energy from
|
|
// each bit could be spread over two consecutive samples. Worst case is
|
|
// that we sample half in one bit, and half in the next. In that case,
|
|
// we're looking for
|
|
//
|
|
// 0 - 0.5 - 0.5 - 0.
|
|
|
|
m0 = m[0]; m1 = m[1];
|
|
|
|
if (m0 >= m1) // m1 *must* be bigger than m0 for this to be F1
|
|
{return (0);}
|
|
|
|
m2 = m[2]; m3 = m[3];
|
|
|
|
//
|
|
// if (m2 <= m0), then assume the sample bob on (Phase == 0), so don't look at m3
|
|
if ((m2 <= m0) || (m2 < m3))
|
|
{m3 = m2; m2 = m0;}
|
|
|
|
if ( (m3 >= m1) // m1 must be bigger than m3
|
|
|| (m0 > m2) // m2 can be equal to m0 if ( 0,1,0,0 )
|
|
|| (m3 > m2) ) // m2 can be equal to m3 if ( 0,1,0,0 )
|
|
{return (0);}
|
|
|
|
// m0 = noise
|
|
// m1 = noise + (signal * X))
|
|
// m2 = noise + (signal * (1-X))
|
|
// m3 = noise
|
|
//
|
|
// Hence, assuming all 4 samples have similar amounts of noise in them
|
|
// signal = (m1 + m2) - ((m0 + m3) * 2)
|
|
// noise = (m0 + m3) / 2
|
|
//
|
|
F1_sig = (m1 + m2) - ((m0 + m3) << 1);
|
|
F1_noise = (m0 + m3) >> 1;
|
|
|
|
if ( (F1_sig < MODEAC_MSG_SQUELCH_LEVEL) // minimum required F1 signal amplitude
|
|
|| (F1_sig < (F1_noise << 2)) ) // minimum allowable Sig/Noise ratio 4:1
|
|
{return (0);}
|
|
|
|
// If we get here then we have a potential F1, so look for an equally valid F2 20.3uS later
|
|
//
|
|
// Our F1 is centered somewhere between samples m[1] and m[2]. We can guestimate where F2 is
|
|
// by comparing the ratio of m1 and m2, and adding on 20.3 uS (40.6 samples)
|
|
//
|
|
mPhase = ((m2 * 20) / (m1 + m2));
|
|
byte = (mPhase + 812) / 20;
|
|
n0 = m[byte++]; n1 = m[byte++];
|
|
|
|
if (n0 >= n1) // n1 *must* be bigger than n0 for this to be F2
|
|
{return (0);}
|
|
|
|
n2 = m[byte++];
|
|
//
|
|
// if the sample bob on (Phase == 0), don't look at n3
|
|
//
|
|
if ((mPhase + 812) % 20)
|
|
{n3 = m[byte++];}
|
|
else
|
|
{n3 = n2; n2 = n0;}
|
|
|
|
if ( (n3 >= n1) // n1 must be bigger than n3
|
|
|| (n0 > n2) // n2 can be equal to n0 ( 0,1,0,0 )
|
|
|| (n3 > n2) ) // n2 can be equal to n3 ( 0,1,0,0 )
|
|
{return (0);}
|
|
|
|
F2_sig = (n1 + n2) - ((n0 + n3) << 1);
|
|
F2_noise = (n0 + n3) >> 1;
|
|
|
|
if ( (F2_sig < MODEAC_MSG_SQUELCH_LEVEL) // minimum required F2 signal amplitude
|
|
|| (F2_sig < (F2_noise << 2)) ) // maximum allowable Sig/Noise ratio 4:1
|
|
{return (0);}
|
|
|
|
fSig = (F1_sig + F2_sig) >> 1;
|
|
fNoise = (F1_noise + F2_noise) >> 1;
|
|
fLoLo = fNoise + (fSig >> 2); // 1/2
|
|
fLevel = fNoise + (fSig >> 1);
|
|
lastBitWasOne = 1;
|
|
lastBit = F1_sig;
|
|
//
|
|
// Now step by a half ModeA bit, 0.725nS, which is 1.45 samples, which is 29/20
|
|
// No need to do bit 0 because we've already selected it as a valid F1
|
|
// Do several bits past the SPI to increase error rejection
|
|
//
|
|
for (j = 1, mPhase += 29; j < 48; mPhase += 29, j ++)
|
|
{
|
|
byte = 1 + (mPhase / 20);
|
|
|
|
thisSample = m[byte] - fNoise;
|
|
if (mPhase % 20) // If the bit is split over two samples...
|
|
{thisSample += (m[byte+1] - fNoise);} // add in the second sample's energy
|
|
|
|
// If we're calculating a space value
|
|
if (j & 1)
|
|
{lastSpace = thisSample;}
|
|
|
|
else
|
|
{// We're calculating a new bit value
|
|
bit = j >> 1;
|
|
if (thisSample >= fLevel)
|
|
{// We're calculating a new bit value, and its a one
|
|
ModeABits |= ModeABitTable[bit--]; // or in the correct bit
|
|
|
|
if (lastBitWasOne)
|
|
{ // This bit is one, last bit was one, so check the last space is somewhere less than one
|
|
if ( (lastSpace >= (thisSample>>1)) || (lastSpace >= lastBit) )
|
|
{ModeAErrs |= ModeAMidTable[bit];}
|
|
}
|
|
|
|
else
|
|
{// This bit,is one, last bit was zero, so check the last space is somewhere less than one
|
|
if (lastSpace >= (thisSample >> 1))
|
|
{ModeAErrs |= ModeAMidTable[bit];}
|
|
}
|
|
|
|
lastBitWasOne = 1;
|
|
}
|
|
|
|
|
|
else
|
|
{// We're calculating a new bit value, and its a zero
|
|
if (lastBitWasOne)
|
|
{ // This bit is zero, last bit was one, so check the last space is somewhere in between
|
|
if (lastSpace >= lastBit)
|
|
{ModeAErrs |= ModeAMidTable[bit];}
|
|
}
|
|
|
|
else
|
|
{// This bit,is zero, last bit was zero, so check the last space is zero too
|
|
if (lastSpace >= fLoLo)
|
|
{ModeAErrs |= ModeAMidTable[bit];}
|
|
}
|
|
|
|
lastBitWasOne = 0;
|
|
}
|
|
|
|
lastBit = (thisSample >> 1);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Output format is : 00:A4:A2:A1:00:B4:B2:B1:00:C4:C2:C1:00:D4:D2:D1
|
|
//
|
|
if ((ModeABits < 3) || (ModeABits & 0xFFFF8808) || (ModeAErrs) )
|
|
{return (ModeABits = 0);}
|
|
|
|
mm->signalLevel = 1.0 * TRUE_AMPLITUDE(fSig + fNoise) * TRUE_AMPLITUDE(fSig + fNoise) / MAX_POWER;
|
|
|
|
return ModeABits;
|
|
}
|
|
//
|
|
//=========================================================================
|
|
//
|
|
// Input format is : 00:A4:A2:A1:00:B4:B2:B1:00:C4:C2:C1:00:D4:D2:D1
|
|
//
|
|
int ModeAToModeC(unsigned int ModeA)
|
|
{
|
|
unsigned int FiveHundreds = 0;
|
|
unsigned int OneHundreds = 0;
|
|
|
|
if ( (ModeA & 0xFFFF888B) // D1 set is illegal. D2 set is > 62700ft which is unlikely
|
|
|| ((ModeA & 0x000000F0) == 0) ) // C1,,C4 cannot be Zero
|
|
{return -9999;}
|
|
|
|
if (ModeA & 0x0010) {OneHundreds ^= 0x007;} // C1
|
|
if (ModeA & 0x0020) {OneHundreds ^= 0x003;} // C2
|
|
if (ModeA & 0x0040) {OneHundreds ^= 0x001;} // C4
|
|
|
|
// Remove 7s from OneHundreds (Make 7->5, snd 5->7).
|
|
if ((OneHundreds & 5) == 5) {OneHundreds ^= 2;}
|
|
|
|
// Check for invalid codes, only 1 to 5 are valid
|
|
if (OneHundreds > 5)
|
|
{return -9999;}
|
|
|
|
//if (ModeA & 0x0001) {FiveHundreds ^= 0x1FF;} // D1 never used for altitude
|
|
if (ModeA & 0x0002) {FiveHundreds ^= 0x0FF;} // D2
|
|
if (ModeA & 0x0004) {FiveHundreds ^= 0x07F;} // D4
|
|
|
|
if (ModeA & 0x1000) {FiveHundreds ^= 0x03F;} // A1
|
|
if (ModeA & 0x2000) {FiveHundreds ^= 0x01F;} // A2
|
|
if (ModeA & 0x4000) {FiveHundreds ^= 0x00F;} // A4
|
|
|
|
if (ModeA & 0x0100) {FiveHundreds ^= 0x007;} // B1
|
|
if (ModeA & 0x0200) {FiveHundreds ^= 0x003;} // B2
|
|
if (ModeA & 0x0400) {FiveHundreds ^= 0x001;} // B4
|
|
|
|
// Correct order of OneHundreds.
|
|
if (FiveHundreds & 1) {OneHundreds = 6 - OneHundreds;}
|
|
|
|
return ((FiveHundreds * 5) + OneHundreds - 13);
|
|
}
|
|
//
|
|
//=========================================================================
|
|
//
|
|
void decodeModeAMessage(struct modesMessage *mm, int ModeA)
|
|
{
|
|
mm->msgtype = 32; // Valid Mode S DF's are DF-00 to DF-31.
|
|
// so use 32 to indicate Mode A/C
|
|
|
|
mm->msgbits = 16; // Fudge up a Mode S style data stream
|
|
mm->msg[0] = (ModeA >> 8);
|
|
mm->msg[1] = (ModeA);
|
|
|
|
// Fudge an ICAO address based on Mode A (remove the Ident bit)
|
|
// Use an upper address byte of FF, since this is ICAO unallocated
|
|
mm->addr = 0x00FF0000 | (ModeA & 0x0000FF7F);
|
|
|
|
// Set the Identity field to ModeA
|
|
mm->modeA = ModeA & 0x7777;
|
|
mm->bFlags |= MODES_ACFLAGS_SQUAWK_VALID;
|
|
mm->bFlags |= MODES_ACFLAGS_NON_ICAO;
|
|
|
|
// Flag ident in flight status
|
|
mm->fs = ModeA & 0x0080;
|
|
|
|
// Not much else we can tell from a Mode A/C reply.
|
|
// Just fudge up a few bits to keep other code happy
|
|
mm->correctedbits = 0;
|
|
}
|
|
//
|
|
// ===================== Mode A/C detection and decoding ===================
|
|
//
|