dump1090/dump1090.c
2015-09-14 19:58:59 +02:00

1248 lines
48 KiB
C

// Part of dump1090, a Mode S message decoder for RTLSDR devices.
//
// dump1090.c: main program & miscellany
//
// Copyright (c) 2014,2015 Oliver Jowett <oliver@mutability.co.uk>
//
// This file is free software: you may copy, redistribute and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation, either version 2 of the License, or (at your
// option) any later version.
//
// This file is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// This file incorporates work covered by the following copyright and
// permission notice:
//
// Copyright (C) 2012 by Salvatore Sanfilippo <antirez@gmail.com>
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "dump1090.h"
#include <rtl-sdr.h>
#include <stdarg.h>
static int verbose_device_search(char *s);
//
// ============================= Utility functions ==========================
//
static void log_with_timestamp(const char *format, ...) __attribute__((format (printf, 1, 2) ));
static void log_with_timestamp(const char *format, ...)
{
char timebuf[128];
char msg[1024];
time_t now;
struct tm local;
va_list ap;
now = time(NULL);
localtime_r(&now, &local);
strftime(timebuf, 128, "%c %Z", &local);
timebuf[127] = 0;
va_start(ap, format);
vsnprintf(msg, 1024, format, ap);
va_end(ap);
msg[1023] = 0;
fprintf(stderr, "%s %s\n", timebuf, msg);
}
static void sigintHandler(int dummy) {
MODES_NOTUSED(dummy);
signal(SIGINT, SIG_DFL); // reset signal handler - bit extra safety
Modes.exit = 1; // Signal to threads that we are done
log_with_timestamp("Caught SIGINT, shutting down..\n");
}
static void sigtermHandler(int dummy) {
MODES_NOTUSED(dummy);
signal(SIGTERM, SIG_DFL); // reset signal handler - bit extra safety
Modes.exit = 1; // Signal to threads that we are done
log_with_timestamp("Caught SIGTERM, shutting down..\n");
}
//
// =============================== Terminal handling ========================
//
#ifndef _WIN32
// Get the number of rows after the terminal changes size.
int getTermRows() {
struct winsize w;
ioctl(STDOUT_FILENO, TIOCGWINSZ, &w);
return (w.ws_row);
}
// Handle resizing terminal
void sigWinchCallback() {
signal(SIGWINCH, SIG_IGN);
Modes.interactive_rows = getTermRows();
interactiveShowData();
signal(SIGWINCH, sigWinchCallback);
}
#else
int getTermRows() { return MODES_INTERACTIVE_ROWS;}
#endif
static void start_cpu_timing(struct timespec *start_time)
{
clock_gettime(CLOCK_THREAD_CPUTIME_ID, start_time);
}
static void end_cpu_timing(const struct timespec *start_time, struct timespec *add_to)
{
struct timespec end_time;
clock_gettime(CLOCK_THREAD_CPUTIME_ID, &end_time);
add_to->tv_sec += (end_time.tv_sec - start_time->tv_sec - 1);
add_to->tv_nsec += (1000000000L + end_time.tv_nsec - start_time->tv_nsec);
add_to->tv_sec += add_to->tv_nsec / 1000000000L;
add_to->tv_nsec = add_to->tv_nsec % 1000000000L;
}
//
// =============================== Initialization ===========================
//
void modesInitConfig(void) {
// Default everything to zero/NULL
memset(&Modes, 0, sizeof(Modes));
// Now initialise things that should not be 0/NULL to their defaults
Modes.gain = MODES_MAX_GAIN;
Modes.freq = MODES_DEFAULT_FREQ;
Modes.ppm_error = MODES_DEFAULT_PPM;
Modes.check_crc = 1;
Modes.net_heartbeat_interval = MODES_NET_HEARTBEAT_INTERVAL;
Modes.net_output_sbs_port = MODES_NET_OUTPUT_SBS_PORT;
Modes.net_output_raw_port = MODES_NET_OUTPUT_RAW_PORT;
Modes.net_input_raw_port = MODES_NET_INPUT_RAW_PORT;
Modes.net_output_beast_port = MODES_NET_OUTPUT_BEAST_PORT;
Modes.net_input_beast_port = MODES_NET_INPUT_BEAST_PORT;
Modes.net_http_port = MODES_NET_HTTP_PORT;
Modes.net_fatsv_port = MODES_NET_OUTPUT_FA_TSV_PORT;
Modes.interactive_rows = getTermRows();
Modes.interactive_display_ttl = MODES_INTERACTIVE_DISPLAY_TTL;
Modes.html_dir = "./public_html";
Modes.json_interval = 1000;
Modes.json_location_accuracy = 1;
Modes.maxRange = 1852 * 300; // 300NM default max range
}
//
//=========================================================================
//
void modesInit(void) {
int i, q;
pthread_mutex_init(&Modes.data_mutex,NULL);
pthread_cond_init(&Modes.data_cond,NULL);
if (Modes.oversample)
Modes.sample_rate = 2400000.0;
else
Modes.sample_rate = 2000000.0;
// Allocate the various buffers used by Modes
Modes.trailing_samples = (MODES_PREAMBLE_US + MODES_LONG_MSG_BITS + 16) * 1e-6 * Modes.sample_rate;
if ( ((Modes.maglut = (uint16_t *) malloc(sizeof(uint16_t) * 256 * 256) ) == NULL) ||
((Modes.log10lut = (uint16_t *) malloc(sizeof(uint16_t) * 256 * 256) ) == NULL) )
{
fprintf(stderr, "Out of memory allocating data buffer.\n");
exit(1);
}
for (i = 0; i < MODES_MAG_BUFFERS; ++i) {
if ( (Modes.mag_buffers[i].data = calloc(MODES_MAG_BUF_SAMPLES+Modes.trailing_samples, sizeof(uint16_t))) == NULL ) {
fprintf(stderr, "Out of memory allocating magnitude buffer.\n");
exit(1);
}
Modes.mag_buffers[i].length = 0;
Modes.mag_buffers[i].dropped = 0;
Modes.mag_buffers[i].sampleTimestamp = 0;
}
// Validate the users Lat/Lon home location inputs
if ( (Modes.fUserLat > 90.0) // Latitude must be -90 to +90
|| (Modes.fUserLat < -90.0) // and
|| (Modes.fUserLon > 360.0) // Longitude must be -180 to +360
|| (Modes.fUserLon < -180.0) ) {
Modes.fUserLat = Modes.fUserLon = 0.0;
} else if (Modes.fUserLon > 180.0) { // If Longitude is +180 to +360, make it -180 to 0
Modes.fUserLon -= 360.0;
}
// If both Lat and Lon are 0.0 then the users location is either invalid/not-set, or (s)he's in the
// Atlantic ocean off the west coast of Africa. This is unlikely to be correct.
// Set the user LatLon valid flag only if either Lat or Lon are non zero. Note the Greenwich meridian
// is at 0.0 Lon,so we must check for either fLat or fLon being non zero not both.
// Testing the flag at runtime will be much quicker than ((fLon != 0.0) || (fLat != 0.0))
Modes.bUserFlags &= ~MODES_USER_LATLON_VALID;
if ((Modes.fUserLat != 0.0) || (Modes.fUserLon != 0.0)) {
Modes.bUserFlags |= MODES_USER_LATLON_VALID;
}
// Limit the maximum requested raw output size to less than one Ethernet Block
if (Modes.net_output_flush_size > (MODES_OUT_FLUSH_SIZE))
{Modes.net_output_flush_size = MODES_OUT_FLUSH_SIZE;}
if (Modes.net_output_flush_interval > (MODES_OUT_FLUSH_INTERVAL))
{Modes.net_output_flush_interval = MODES_OUT_FLUSH_INTERVAL;}
if (Modes.net_sndbuf_size > (MODES_NET_SNDBUF_MAX))
{Modes.net_sndbuf_size = MODES_NET_SNDBUF_MAX;}
// compute UC8 magnitude lookup table
for (i = 0; i <= 255; i++) {
for (q = 0; q <= 255; q++) {
float fI, fQ, magsq;
fI = (i - 127.5) / 127.5;
fQ = (q - 127.5) / 127.5;
magsq = fI * fI + fQ * fQ;
if (magsq > 1)
magsq = 1;
Modes.maglut[le16toh((i*256)+q)] = (uint16_t) round(sqrtf(magsq) * 65535.0);
}
}
// Prepare the log10 lookup table: 100log10(x)
Modes.log10lut[0] = 0; // poorly defined..
for (i = 1; i <= 65535; i++) {
Modes.log10lut[i] = (uint16_t) round(100.0 * log10(i));
}
// Prepare error correction tables
modesChecksumInit(Modes.nfix_crc);
icaoFilterInit();
if (Modes.show_only)
icaoFilterAdd(Modes.show_only);
// Prepare sample conversion
if (!Modes.net_only) {
if (Modes.filename == NULL) // using a real RTLSDR, use UC8 input always
Modes.input_format = INPUT_UC8;
Modes.converter_function = init_converter(Modes.input_format,
Modes.sample_rate,
Modes.dc_filter,
Modes.measure_noise, /* total power is interesting if we want noise */
&Modes.converter_state);
if (!Modes.converter_function) {
fprintf(stderr, "Can't initialize sample converter, giving up.\n");
exit(1);
}
}
}
static void convert_samples(void *iq,
uint16_t *mag,
unsigned nsamples,
double *power)
{
Modes.converter_function(iq, mag, nsamples, Modes.converter_state, power);
}
//
// =============================== RTLSDR handling ==========================
//
int modesInitRTLSDR(void) {
int j;
int device_count, dev_index = 0;
char vendor[256], product[256], serial[256];
if (Modes.dev_name) {
if ( (dev_index = verbose_device_search(Modes.dev_name)) < 0 )
return -1;
}
device_count = rtlsdr_get_device_count();
if (!device_count) {
fprintf(stderr, "No supported RTLSDR devices found.\n");
return -1;
}
fprintf(stderr, "Found %d device(s):\n", device_count);
for (j = 0; j < device_count; j++) {
rtlsdr_get_device_usb_strings(j, vendor, product, serial);
fprintf(stderr, "%d: %s, %s, SN: %s %s\n", j, vendor, product, serial,
(j == dev_index) ? "(currently selected)" : "");
}
if (rtlsdr_open(&Modes.dev, dev_index) < 0) {
fprintf(stderr, "Error opening the RTLSDR device: %s\n",
strerror(errno));
return -1;
}
// Set gain, frequency, sample rate, and reset the device
rtlsdr_set_tuner_gain_mode(Modes.dev,
(Modes.gain == MODES_AUTO_GAIN) ? 0 : 1);
if (Modes.gain != MODES_AUTO_GAIN) {
int *gains;
int numgains;
numgains = rtlsdr_get_tuner_gains(Modes.dev, NULL);
if (numgains <= 0) {
fprintf(stderr, "Error getting tuner gains\n");
return -1;
}
gains = malloc(numgains * sizeof(int));
if (rtlsdr_get_tuner_gains(Modes.dev, gains) != numgains) {
fprintf(stderr, "Error getting tuner gains\n");
free(gains);
return -1;
}
if (Modes.gain == MODES_MAX_GAIN) {
int highest = -1;
int i;
for (i = 0; i < numgains; ++i) {
if (gains[i] > highest)
highest = gains[i];
}
Modes.gain = highest;
fprintf(stderr, "Max available gain is: %.2f dB\n", Modes.gain/10.0);
} else {
int closest = -1;
int i;
for (i = 0; i < numgains; ++i) {
if (closest == -1 || abs(gains[i] - Modes.gain) < abs(closest - Modes.gain))
closest = gains[i];
}
if (closest != Modes.gain) {
Modes.gain = closest;
fprintf(stderr, "Closest available gain: %.2f dB\n", Modes.gain/10.0);
}
}
free(gains);
fprintf(stderr, "Setting gain to: %.2f dB\n", Modes.gain/10.0);
if (rtlsdr_set_tuner_gain(Modes.dev, Modes.gain) < 0) {
fprintf(stderr, "Error setting tuner gains\n");
return -1;
}
} else {
fprintf(stderr, "Using automatic gain control.\n");
}
rtlsdr_set_freq_correction(Modes.dev, Modes.ppm_error);
if (Modes.enable_agc) rtlsdr_set_agc_mode(Modes.dev, 1);
rtlsdr_set_center_freq(Modes.dev, Modes.freq);
rtlsdr_set_sample_rate(Modes.dev, (unsigned)Modes.sample_rate);
rtlsdr_reset_buffer(Modes.dev);
fprintf(stderr, "Gain reported by device: %.2f dB\n",
rtlsdr_get_tuner_gain(Modes.dev)/10.0);
return 0;
}
//
//=========================================================================
//
// We use a thread reading data in background, while the main thread
// handles decoding and visualization of data to the user.
//
// The reading thread calls the RTLSDR API to read data asynchronously, and
// uses a callback to populate the data buffer.
//
// A Mutex is used to avoid races with the decoding thread.
//
static struct timespec reader_thread_start;
void rtlsdrCallback(unsigned char *buf, uint32_t len, void *ctx) {
struct mag_buf *outbuf;
struct mag_buf *lastbuf;
uint32_t slen;
unsigned next_free_buffer;
unsigned free_bufs;
unsigned block_duration;
static int was_odd = 0; // paranoia!!
static int dropping = 0;
MODES_NOTUSED(ctx);
// Lock the data buffer variables before accessing them
pthread_mutex_lock(&Modes.data_mutex);
if (Modes.exit) {
rtlsdr_cancel_async(Modes.dev); // ask our caller to exit
}
next_free_buffer = (Modes.first_free_buffer + 1) % MODES_MAG_BUFFERS;
outbuf = &Modes.mag_buffers[Modes.first_free_buffer];
lastbuf = &Modes.mag_buffers[(Modes.first_free_buffer + MODES_MAG_BUFFERS - 1) % MODES_MAG_BUFFERS];
free_bufs = (Modes.first_filled_buffer - next_free_buffer + MODES_MAG_BUFFERS) % MODES_MAG_BUFFERS;
// Paranoia! Unlikely, but let's go for belt and suspenders here
if (len != MODES_RTL_BUF_SIZE) {
fprintf(stderr, "weirdness: rtlsdr gave us a block with an unusual size (got %u bytes, expected %u bytes)\n",
(unsigned)len, (unsigned)MODES_RTL_BUF_SIZE);
if (len > MODES_RTL_BUF_SIZE) {
// wat?! Discard the start.
unsigned discard = (len - MODES_RTL_BUF_SIZE + 1) / 2;
outbuf->dropped += discard;
buf += discard*2;
len -= discard*2;
}
}
if (was_odd) {
// Drop a sample so we are in sync with I/Q samples again (hopefully)
++buf;
--len;
++outbuf->dropped;
}
was_odd = (len & 1);
slen = len/2;
if (free_bufs == 0 || (dropping && free_bufs < MODES_MAG_BUFFERS/2)) {
// FIFO is full. Drop this block.
dropping = 1;
outbuf->dropped += slen;
pthread_mutex_unlock(&Modes.data_mutex);
return;
}
dropping = 0;
pthread_mutex_unlock(&Modes.data_mutex);
// Compute the sample timestamp and system timestamp for the start of the block
outbuf->sampleTimestamp = lastbuf->sampleTimestamp + 12e6 * (lastbuf->length + outbuf->dropped) / Modes.sample_rate;
block_duration = 1e9 * slen / Modes.sample_rate;
// Get the approx system time for the start of this block
clock_gettime(CLOCK_REALTIME, &outbuf->sysTimestamp);
outbuf->sysTimestamp.tv_nsec -= block_duration;
normalize_timespec(&outbuf->sysTimestamp);
// Copy trailing data from last block (or reset if not valid)
if (outbuf->dropped == 0 && lastbuf->length >= Modes.trailing_samples) {
memcpy(outbuf->data, lastbuf->data + lastbuf->length - Modes.trailing_samples, Modes.trailing_samples * sizeof(uint16_t));
} else {
memset(outbuf->data, 0, Modes.trailing_samples * sizeof(uint16_t));
}
// Convert the new data
outbuf->length = slen;
convert_samples(buf, &outbuf->data[Modes.trailing_samples], slen, &outbuf->total_power);
// Push the new data to the demodulation thread
pthread_mutex_lock(&Modes.data_mutex);
Modes.mag_buffers[next_free_buffer].dropped = 0;
Modes.mag_buffers[next_free_buffer].length = 0; // just in case
Modes.first_free_buffer = next_free_buffer;
// accumulate CPU while holding the mutex, and restart measurement
end_cpu_timing(&reader_thread_start, &Modes.reader_cpu_accumulator);
start_cpu_timing(&reader_thread_start);
pthread_cond_signal(&Modes.data_cond);
pthread_mutex_unlock(&Modes.data_mutex);
}
//
//=========================================================================
//
// This is used when --ifile is specified in order to read data from file
// instead of using an RTLSDR device
//
void readDataFromFile(void) {
int eof = 0;
struct timespec next_buffer_delivery;
void *readbuf;
int bytes_per_sample = 0;
switch (Modes.input_format) {
case INPUT_UC8:
bytes_per_sample = 2;
break;
case INPUT_SC16:
case INPUT_SC16Q11:
bytes_per_sample = 4;
break;
}
if (!(readbuf = malloc(MODES_MAG_BUF_SAMPLES * bytes_per_sample))) {
fprintf(stderr, "failed to allocate read buffer\n");
exit(1);
}
clock_gettime(CLOCK_MONOTONIC, &next_buffer_delivery);
pthread_mutex_lock(&Modes.data_mutex);
while (!Modes.exit && !eof) {
ssize_t nread, toread;
void *r;
struct mag_buf *outbuf, *lastbuf;
unsigned next_free_buffer;
unsigned slen;
next_free_buffer = (Modes.first_free_buffer + 1) % MODES_MAG_BUFFERS;
if (next_free_buffer == Modes.first_filled_buffer) {
// no space for output yet
pthread_cond_wait(&Modes.data_cond, &Modes.data_mutex);
continue;
}
outbuf = &Modes.mag_buffers[Modes.first_free_buffer];
lastbuf = &Modes.mag_buffers[(Modes.first_free_buffer + MODES_MAG_BUFFERS - 1) % MODES_MAG_BUFFERS];
pthread_mutex_unlock(&Modes.data_mutex);
// Compute the sample timestamp and system timestamp for the start of the block
outbuf->sampleTimestamp = lastbuf->sampleTimestamp + 12e6 * lastbuf->length / Modes.sample_rate;
// Copy trailing data from last block (or reset if not valid)
if (lastbuf->length >= Modes.trailing_samples) {
memcpy(outbuf->data, lastbuf->data + lastbuf->length - Modes.trailing_samples, Modes.trailing_samples * sizeof(uint16_t));
} else {
memset(outbuf->data, 0, Modes.trailing_samples * sizeof(uint16_t));
}
// Get the system time for the start of this block
clock_gettime(CLOCK_REALTIME, &outbuf->sysTimestamp);
toread = MODES_MAG_BUF_SAMPLES * bytes_per_sample;
r = readbuf;
while (toread) {
nread = read(Modes.fd, r, toread);
if (nread <= 0) {
// Done.
eof = 1;
break;
}
r += nread;
toread -= nread;
}
slen = outbuf->length = MODES_MAG_BUF_SAMPLES - toread/bytes_per_sample;
// Convert the new data
convert_samples(readbuf, &outbuf->data[Modes.trailing_samples], slen, &outbuf->total_power);
if (Modes.throttle) {
// Wait until we are allowed to release this buffer to the main thread
while (clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &next_buffer_delivery, NULL) == EINTR)
;
// compute the time we can deliver the next buffer.
next_buffer_delivery.tv_nsec += outbuf->length * 1e9 / Modes.sample_rate;
normalize_timespec(&next_buffer_delivery);
}
// Push the new data to the main thread
pthread_mutex_lock(&Modes.data_mutex);
Modes.first_free_buffer = next_free_buffer;
// accumulate CPU while holding the mutex, and restart measurement
end_cpu_timing(&reader_thread_start, &Modes.reader_cpu_accumulator);
start_cpu_timing(&reader_thread_start);
pthread_cond_signal(&Modes.data_cond);
}
free(readbuf);
// Wait for the main thread to consume all data
while (!Modes.exit && Modes.first_filled_buffer != Modes.first_free_buffer)
pthread_cond_wait(&Modes.data_cond, &Modes.data_mutex);
pthread_mutex_unlock(&Modes.data_mutex);
}
//
//=========================================================================
//
// We read data using a thread, so the main thread only handles decoding
// without caring about data acquisition
//
void *readerThreadEntryPoint(void *arg) {
MODES_NOTUSED(arg);
start_cpu_timing(&reader_thread_start); // we accumulate in rtlsdrCallback() or readDataFromFile()
if (Modes.filename == NULL) {
while (!Modes.exit) {
rtlsdr_read_async(Modes.dev, rtlsdrCallback, NULL,
MODES_RTL_BUFFERS,
MODES_RTL_BUF_SIZE);
if (!Modes.exit) {
log_with_timestamp("Warning: lost the connection to the RTLSDR device.");
rtlsdr_close(Modes.dev);
Modes.dev = NULL;
do {
sleep(5);
log_with_timestamp("Trying to reconnect to the RTLSDR device..");
} while (!Modes.exit && modesInitRTLSDR() < 0);
}
}
if (Modes.dev != NULL) {
rtlsdr_close(Modes.dev);
Modes.dev = NULL;
}
} else {
readDataFromFile();
}
// Wake the main thread (if it's still waiting)
pthread_mutex_lock(&Modes.data_mutex);
Modes.exit = 1; // just in case
pthread_cond_signal(&Modes.data_cond);
pthread_mutex_unlock(&Modes.data_mutex);
#ifndef _WIN32
pthread_exit(NULL);
#else
return NULL;
#endif
}
//
// ============================== Snip mode =================================
//
// Get raw IQ samples and filter everything is < than the specified level
// for more than 256 samples in order to reduce example file size
//
void snipMode(int level) {
int i, q;
uint64_t c = 0;
while ((i = getchar()) != EOF && (q = getchar()) != EOF) {
if (abs(i-127) < level && abs(q-127) < level) {
c++;
if (c > MODES_PREAMBLE_SIZE) continue;
} else {
c = 0;
}
putchar(i);
putchar(q);
}
}
//
// ================================ Main ====================================
//
void showHelp(void) {
printf(
"-----------------------------------------------------------------------------\n"
"| dump1090 ModeS Receiver %45s |\n"
"-----------------------------------------------------------------------------\n"
"--device-index <index> Select RTL device (default: 0)\n"
"--gain <db> Set gain (default: max gain. Use -10 for auto-gain)\n"
"--enable-agc Enable the Automatic Gain Control (default: off)\n"
"--freq <hz> Set frequency (default: 1090 Mhz)\n"
"--ifile <filename> Read data from file (use '-' for stdin)\n"
"--iformat <format> Sample format for --ifile: UC8 (default), SC16, or SC16Q11\n"
"--throttle When reading from a file, play back in realtime, not at max speed\n"
"--interactive Interactive mode refreshing data on screen. Implies --throttle\n"
"--interactive-rows <num> Max number of rows in interactive mode (default: 15)\n"
"--interactive-ttl <sec> Remove from list if idle for <sec> (default: 60)\n"
"--interactive-rtl1090 Display flight table in RTL1090 format\n"
"--raw Show only messages hex values\n"
"--net Enable networking\n"
"--modeac Enable decoding of SSR Modes 3/A & 3/C\n"
"--net-only Enable just networking, no RTL device or file used\n"
"--net-bind-address <ip> IP address to bind to (default: Any; Use 127.0.0.1 for private)\n"
"--net-http-port <port> HTTP server port (default: 8080)\n"
"--net-ri-port <port> TCP raw input listen port (default: 30001)\n"
"--net-ro-port <port> TCP raw output listen port (default: 30002)\n"
"--net-sbs-port <port> TCP BaseStation output listen port (default: 30003)\n"
"--net-bi-port <port> TCP Beast input listen port (default: 30004)\n"
"--net-bo-port <port> TCP Beast output listen port (default: 30005)\n"
"--net-fatsv-port <port> FlightAware TSV output port (default: 10001)\n"
"--net-ro-size <size> TCP output minimum size (default: 0)\n"
"--net-ro-interval <rate> TCP output memory flush rate in seconds (default: 0)\n"
"--net-heartbeat <rate> TCP heartbeat rate in seconds (default: 60 sec; 0 to disable)\n"
"--net-buffer <n> TCP buffer size 64Kb * (2^n) (default: n=0, 64Kb)\n"
"--net-verbatim Do not apply CRC corrections to messages we forward; send unchanged\n"
"--forward-mlat Allow forwarding of received mlat results to output ports\n"
"--lat <latitude> Reference/receiver latitude for surface posn (opt)\n"
"--lon <longitude> Reference/receiver longitude for surface posn (opt)\n"
"--max-range <distance> Absolute maximum range for position decoding (in nm, default: 300)\n"
"--fix Enable single-bits error correction using CRC\n"
"--no-fix Disable single-bits error correction using CRC\n"
"--no-crc-check Disable messages with broken CRC (discouraged)\n"
"--phase-enhance Enable phase enhancement\n"
"--aggressive More CPU for more messages (two bits fixes, ...)\n"
"--mlat display raw messages in Beast ascii mode\n"
"--stats With --ifile print stats at exit. No other output\n"
"--stats-range Collect/show range histogram\n"
"--stats-every <seconds> Show and reset stats every <seconds> seconds\n"
"--onlyaddr Show only ICAO addresses (testing purposes)\n"
"--metric Use metric units (meters, km/h, ...)\n"
"--snip <level> Strip IQ file removing samples < level\n"
"--debug <flags> Debug mode (verbose), see README for details\n"
"--quiet Disable output to stdout. Use for daemon applications\n"
"--show-only <addr> Show only messages from the given ICAO on stdout\n"
"--ppm <error> Set receiver error in parts per million (default 0)\n"
"--html-dir <dir> Use <dir> as base directory for the internal HTTP server. Defaults to ./public_html\n"
"--write-json <dir> Periodically write json output to <dir> (for serving by a separate webserver)\n"
"--write-json-every <t> Write json output every t seconds (default 1)\n"
"--json-location-accuracy <n> Accuracy of receiver location in json metadata: 0=no location, 1=approximate, 2=exact\n"
"--oversample Use the 2.4MHz demodulator\n"
"--dcfilter Apply a 1Hz DC filter to input data (requires lots more CPU)\n"
"--measure-noise Measure noise power (requires slightly more CPU)\n"
"--help Show this help\n"
"\n"
"Debug mode flags: d = Log frames decoded with errors\n"
" D = Log frames decoded with zero errors\n"
" c = Log frames with bad CRC\n"
" C = Log frames with good CRC\n"
" p = Log frames with bad preamble\n"
" n = Log network debugging info\n"
" j = Log frames to frames.js, loadable by debug.html\n",
MODES_DUMP1090_VARIANT " " MODES_DUMP1090_VERSION
);
}
static void display_total_stats(void)
{
struct stats added;
add_stats(&Modes.stats_alltime, &Modes.stats_current, &added);
display_stats(&added);
}
//
//=========================================================================
//
// This function is called a few times every second by main in order to
// perform tasks we need to do continuously, like accepting new clients
// from the net, refreshing the screen in interactive mode, and so forth
//
void backgroundTasks(void) {
static uint64_t next_stats_display;
static uint64_t next_stats_update;
static uint64_t next_json, next_history;
uint64_t now = mstime();
icaoFilterExpire();
trackPeriodicUpdate();
if (Modes.net) {
modesNetPeriodicWork();
}
// Refresh screen when in interactive mode
if (Modes.interactive) {
interactiveShowData();
}
// always update end time so it is current when requests arrive
Modes.stats_current.end = now;
if (now >= next_stats_update) {
int i;
if (next_stats_update == 0) {
next_stats_update = now + 60000;
} else {
Modes.stats_latest_1min = (Modes.stats_latest_1min + 1) % 15;
Modes.stats_1min[Modes.stats_latest_1min] = Modes.stats_current;
add_stats(&Modes.stats_current, &Modes.stats_alltime, &Modes.stats_alltime);
add_stats(&Modes.stats_current, &Modes.stats_periodic, &Modes.stats_periodic);
reset_stats(&Modes.stats_5min);
for (i = 0; i < 5; ++i)
add_stats(&Modes.stats_1min[(Modes.stats_latest_1min - i + 15) % 15], &Modes.stats_5min, &Modes.stats_5min);
reset_stats(&Modes.stats_15min);
for (i = 0; i < 15; ++i)
add_stats(&Modes.stats_1min[i], &Modes.stats_15min, &Modes.stats_15min);
reset_stats(&Modes.stats_current);
Modes.stats_current.start = Modes.stats_current.end = now;
if (Modes.json_dir)
writeJsonToFile("stats.json", generateStatsJson);
next_stats_update += 60000;
}
}
if (Modes.stats && now >= next_stats_display) {
if (next_stats_display == 0) {
next_stats_display = now + Modes.stats;
} else {
add_stats(&Modes.stats_periodic, &Modes.stats_current, &Modes.stats_periodic);
display_stats(&Modes.stats_periodic);
reset_stats(&Modes.stats_periodic);
next_stats_display += Modes.stats;
}
}
if (Modes.json_dir && now >= next_json) {
writeJsonToFile("aircraft.json", generateAircraftJson);
next_json = now + Modes.json_interval;
}
if ((Modes.json_dir || Modes.net_http_port) && now >= next_history) {
int rewrite_receiver_json = (Modes.json_aircraft_history[HISTORY_SIZE-1].content == NULL);
free(Modes.json_aircraft_history[Modes.json_aircraft_history_next].content); // might be NULL, that's OK.
Modes.json_aircraft_history[Modes.json_aircraft_history_next].content =
generateAircraftJson("/data/aircraft.json", &Modes.json_aircraft_history[Modes.json_aircraft_history_next].clen);
if (Modes.json_dir) {
char filebuf[PATH_MAX];
snprintf(filebuf, PATH_MAX, "history_%d.json", Modes.json_aircraft_history_next);
writeJsonToFile(filebuf, generateHistoryJson);
}
Modes.json_aircraft_history_next = (Modes.json_aircraft_history_next+1) % HISTORY_SIZE;
if (rewrite_receiver_json)
writeJsonToFile("receiver.json", generateReceiverJson); // number of history entries changed
next_history = now + HISTORY_INTERVAL;
}
}
//
//=========================================================================
//
int verbose_device_search(char *s)
{
int i, device_count, device, offset;
char *s2;
char vendor[256], product[256], serial[256];
device_count = rtlsdr_get_device_count();
if (!device_count) {
fprintf(stderr, "No supported devices found.\n");
return -1;
}
fprintf(stderr, "Found %d device(s):\n", device_count);
for (i = 0; i < device_count; i++) {
rtlsdr_get_device_usb_strings(i, vendor, product, serial);
fprintf(stderr, " %d: %s, %s, SN: %s\n", i, vendor, product, serial);
}
fprintf(stderr, "\n");
/* does string look like raw id number */
device = (int)strtol(s, &s2, 0);
if (s2[0] == '\0' && device >= 0 && device < device_count) {
fprintf(stderr, "Using device %d: %s\n",
device, rtlsdr_get_device_name((uint32_t)device));
return device;
}
/* does string exact match a serial */
for (i = 0; i < device_count; i++) {
rtlsdr_get_device_usb_strings(i, vendor, product, serial);
if (strcmp(s, serial) != 0) {
continue;}
device = i;
fprintf(stderr, "Using device %d: %s\n",
device, rtlsdr_get_device_name((uint32_t)device));
return device;
}
/* does string prefix match a serial */
for (i = 0; i < device_count; i++) {
rtlsdr_get_device_usb_strings(i, vendor, product, serial);
if (strncmp(s, serial, strlen(s)) != 0) {
continue;}
device = i;
fprintf(stderr, "Using device %d: %s\n",
device, rtlsdr_get_device_name((uint32_t)device));
return device;
}
/* does string suffix match a serial */
for (i = 0; i < device_count; i++) {
rtlsdr_get_device_usb_strings(i, vendor, product, serial);
offset = strlen(serial) - strlen(s);
if (offset < 0) {
continue;}
if (strncmp(s, serial+offset, strlen(s)) != 0) {
continue;}
device = i;
fprintf(stderr, "Using device %d: %s\n",
device, rtlsdr_get_device_name((uint32_t)device));
return device;
}
fprintf(stderr, "No matching devices found.\n");
return -1;
}
//
//=========================================================================
//
int main(int argc, char **argv) {
int j;
// Set sane defaults
modesInitConfig();
// signal handlers:
signal(SIGINT, sigintHandler);
signal(SIGTERM, sigtermHandler);
// Parse the command line options
for (j = 1; j < argc; j++) {
int more = j+1 < argc; // There are more arguments
if (!strcmp(argv[j],"--device-index") && more) {
Modes.dev_name = strdup(argv[++j]);
} else if (!strcmp(argv[j],"--gain") && more) {
Modes.gain = (int) (atof(argv[++j])*10); // Gain is in tens of DBs
} else if (!strcmp(argv[j],"--enable-agc")) {
Modes.enable_agc++;
} else if (!strcmp(argv[j],"--freq") && more) {
Modes.freq = (int) strtoll(argv[++j],NULL,10);
} else if (!strcmp(argv[j],"--ifile") && more) {
Modes.filename = strdup(argv[++j]);
} else if (!strcmp(argv[j],"--iformat") && more) {
++j;
if (!strcasecmp(argv[j], "uc8")) {
Modes.input_format = INPUT_UC8;
} else if (!strcasecmp(argv[j], "sc16")) {
Modes.input_format = INPUT_SC16;
} else if (!strcasecmp(argv[j], "sc16q11")) {
Modes.input_format = INPUT_SC16Q11;
} else {
fprintf(stderr, "Input format '%s' not understood (supported values: UC8, SC16, SC16Q11)\n",
argv[j]);
exit(1);
}
} else if (!strcmp(argv[j],"--dcfilter")) {
Modes.dc_filter = 1;
} else if (!strcmp(argv[j],"--measure-noise")) {
Modes.measure_noise = 1;
} else if (!strcmp(argv[j],"--fix")) {
Modes.nfix_crc = 1;
} else if (!strcmp(argv[j],"--no-fix")) {
Modes.nfix_crc = 0;
} else if (!strcmp(argv[j],"--no-crc-check")) {
Modes.check_crc = 0;
} else if (!strcmp(argv[j],"--phase-enhance")) {
Modes.phase_enhance = 1;
} else if (!strcmp(argv[j],"--raw")) {
Modes.raw = 1;
} else if (!strcmp(argv[j],"--net")) {
Modes.net = 1;
} else if (!strcmp(argv[j],"--modeac")) {
Modes.mode_ac = 1;
} else if (!strcmp(argv[j],"--net-beast")) {
Modes.beast = 1;
} else if (!strcmp(argv[j],"--net-only")) {
Modes.net = 1;
Modes.net_only = 1;
} else if (!strcmp(argv[j],"--net-heartbeat") && more) {
Modes.net_heartbeat_interval = (uint64_t)(1000 * atof(argv[++j]));
} else if (!strcmp(argv[j],"--net-ro-size") && more) {
Modes.net_output_flush_size = atoi(argv[++j]);
} else if (!strcmp(argv[j],"--net-ro-rate") && more) {
Modes.net_output_flush_interval = 1000 * atoi(argv[++j]) / 15; // backwards compatibility
} else if (!strcmp(argv[j],"--net-ro-interval") && more) {
Modes.net_output_flush_interval = (uint64_t)(1000 * atof(argv[++j]));
} else if (!strcmp(argv[j],"--net-ro-port") && more) {
if (Modes.beast) // Required for legacy backward compatibility
{Modes.net_output_beast_port = atoi(argv[++j]);;}
else
{Modes.net_output_raw_port = atoi(argv[++j]);}
} else if (!strcmp(argv[j],"--net-ri-port") && more) {
Modes.net_input_raw_port = atoi(argv[++j]);
} else if (!strcmp(argv[j],"--net-bo-port") && more) {
Modes.net_output_beast_port = atoi(argv[++j]);
} else if (!strcmp(argv[j],"--net-bi-port") && more) {
Modes.net_input_beast_port = atoi(argv[++j]);
} else if (!strcmp(argv[j],"--net-bind-address") && more) {
Modes.net_bind_address = strdup(argv[++j]);
} else if (!strcmp(argv[j],"--net-http-port") && more) {
Modes.net_http_port = atoi(argv[++j]);
} else if (!strcmp(argv[j],"--net-fatsv-port") && more) {
Modes.net_fatsv_port = atoi(argv[++j]);
} else if (!strcmp(argv[j],"--net-sbs-port") && more) {
Modes.net_output_sbs_port = atoi(argv[++j]);
} else if (!strcmp(argv[j],"--net-buffer") && more) {
Modes.net_sndbuf_size = atoi(argv[++j]);
} else if (!strcmp(argv[j],"--net-verbatim")) {
Modes.net_verbatim = 1;
} else if (!strcmp(argv[j],"--forward-mlat")) {
Modes.forward_mlat = 1;
} else if (!strcmp(argv[j],"--onlyaddr")) {
Modes.onlyaddr = 1;
} else if (!strcmp(argv[j],"--metric")) {
Modes.metric = 1;
} else if (!strcmp(argv[j],"--aggressive")) {
Modes.nfix_crc = MODES_MAX_BITERRORS;
} else if (!strcmp(argv[j],"--interactive")) {
Modes.interactive = Modes.throttle = 1;
} else if (!strcmp(argv[j],"--throttle")) {
Modes.throttle = 1;
} else if (!strcmp(argv[j],"--interactive-rows") && more) {
Modes.interactive_rows = atoi(argv[++j]);
} else if (!strcmp(argv[j],"--interactive-ttl") && more) {
Modes.interactive_display_ttl = (uint64_t)(1000 * atof(argv[++j]));
} else if (!strcmp(argv[j],"--lat") && more) {
Modes.fUserLat = atof(argv[++j]);
} else if (!strcmp(argv[j],"--lon") && more) {
Modes.fUserLon = atof(argv[++j]);
} else if (!strcmp(argv[j],"--max-range") && more) {
Modes.maxRange = atof(argv[++j]) * 1852.0; // convert to metres
} else if (!strcmp(argv[j],"--debug") && more) {
char *f = argv[++j];
while(*f) {
switch(*f) {
case 'D': Modes.debug |= MODES_DEBUG_DEMOD; break;
case 'd': Modes.debug |= MODES_DEBUG_DEMODERR; break;
case 'C': Modes.debug |= MODES_DEBUG_GOODCRC; break;
case 'c': Modes.debug |= MODES_DEBUG_BADCRC; break;
case 'p': Modes.debug |= MODES_DEBUG_NOPREAMBLE; break;
case 'n': Modes.debug |= MODES_DEBUG_NET; break;
case 'j': Modes.debug |= MODES_DEBUG_JS; break;
default:
fprintf(stderr, "Unknown debugging flag: %c\n", *f);
exit(1);
break;
}
f++;
}
} else if (!strcmp(argv[j],"--stats")) {
if (!Modes.stats)
Modes.stats = (uint64_t)1 << 60; // "never"
} else if (!strcmp(argv[j],"--stats-range")) {
Modes.stats_range_histo = 1;
} else if (!strcmp(argv[j],"--stats-every") && more) {
Modes.stats = (uint64_t) (1000 * atof(argv[++j]));
} else if (!strcmp(argv[j],"--snip") && more) {
snipMode(atoi(argv[++j]));
exit(0);
} else if (!strcmp(argv[j],"--help")) {
showHelp();
exit(0);
} else if (!strcmp(argv[j],"--ppm") && more) {
Modes.ppm_error = atoi(argv[++j]);
} else if (!strcmp(argv[j],"--quiet")) {
Modes.quiet = 1;
} else if (!strcmp(argv[j],"--show-only") && more) {
Modes.show_only = (uint32_t) strtoul(argv[++j], NULL, 16);
} else if (!strcmp(argv[j],"--mlat")) {
Modes.mlat = 1;
} else if (!strcmp(argv[j],"--interactive-rtl1090")) {
Modes.interactive = 1;
Modes.interactive_rtl1090 = 1;
} else if (!strcmp(argv[j],"--oversample")) {
Modes.oversample = 1;
} else if (!strcmp(argv[j], "--html-dir") && more) {
Modes.html_dir = strdup(argv[++j]);
#ifndef _WIN32
} else if (!strcmp(argv[j], "--write-json") && more) {
Modes.json_dir = strdup(argv[++j]);
} else if (!strcmp(argv[j], "--write-json-every") && more) {
Modes.json_interval = (uint64_t)(1000 * atof(argv[++j]));
if (Modes.json_interval < 100) // 0.1s
Modes.json_interval = 100;
} else if (!strcmp(argv[j], "--json-location-accuracy") && more) {
Modes.json_location_accuracy = atoi(argv[++j]);
#endif
} else {
fprintf(stderr,
"Unknown or not enough arguments for option '%s'.\n\n",
argv[j]);
showHelp();
exit(1);
}
}
#ifdef _WIN32
// Try to comply with the Copyright license conditions for binary distribution
if (!Modes.quiet) {showCopyright();}
#endif
#ifndef _WIN32
// Setup for SIGWINCH for handling lines
if (Modes.interactive) {signal(SIGWINCH, sigWinchCallback);}
#endif
if (Modes.mode_ac && Modes.oversample) {
fprintf(stderr,
"Warning: --modeac is currently ignored when --oversample is used;\n"
" no ModeA/C messages will be decoded.\n");
}
// Initialization
log_with_timestamp("%s %s starting up.", MODES_DUMP1090_VARIANT, MODES_DUMP1090_VERSION);
modesInit();
if (Modes.net_only) {
fprintf(stderr,"Net-only mode, no RTL device or file open.\n");
} else if (Modes.filename == NULL) {
if (modesInitRTLSDR() < 0) {
exit(1);
}
} else {
if (Modes.filename[0] == '-' && Modes.filename[1] == '\0') {
Modes.fd = STDIN_FILENO;
} else if ((Modes.fd = open(Modes.filename,
#ifdef _WIN32
(O_RDONLY | O_BINARY)
#else
(O_RDONLY)
#endif
)) == -1) {
perror("Opening data file");
exit(1);
}
}
if (Modes.net) modesInitNet();
// init stats:
Modes.stats_current.start = Modes.stats_current.end =
Modes.stats_alltime.start = Modes.stats_alltime.end =
Modes.stats_periodic.start = Modes.stats_periodic.end =
Modes.stats_5min.start = Modes.stats_5min.end =
Modes.stats_15min.start = Modes.stats_15min.end = mstime();
for (j = 0; j < 15; ++j)
Modes.stats_1min[j].start = Modes.stats_1min[j].end = Modes.stats_current.start;
// write initial json files so they're not missing
writeJsonToFile("receiver.json", generateReceiverJson);
writeJsonToFile("stats.json", generateStatsJson);
writeJsonToFile("aircraft.json", generateAircraftJson);
// If the user specifies --net-only, just run in order to serve network
// clients without reading data from the RTL device
if (Modes.net_only) {
while (!Modes.exit) {
struct timespec start_time;
start_cpu_timing(&start_time);
backgroundTasks();
end_cpu_timing(&start_time, &Modes.stats_current.background_cpu);
usleep(100000);
}
} else {
// Create the thread that will read the data from the device.
pthread_mutex_lock(&Modes.data_mutex);
pthread_create(&Modes.reader_thread, NULL, readerThreadEntryPoint, NULL);
while (Modes.exit == 0) {
struct timespec start_time;
if (Modes.first_free_buffer == Modes.first_filled_buffer) {
/* wait for more data.
* we should be getting data every 50-60ms. wait for max 100ms before we give up and do some background work.
* this is fairly aggressive as all our network I/O runs out of the background work!
*/
struct timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
ts.tv_nsec += 100000000;
normalize_timespec(&ts);
pthread_cond_timedwait(&Modes.data_cond, &Modes.data_mutex, &ts); // This unlocks Modes.data_mutex, and waits for Modes.data_cond
}
// Modes.data_mutex is locked, and possibly we have data.
// copy out reader CPU time and reset it
add_timespecs(&Modes.reader_cpu_accumulator, &Modes.stats_current.reader_cpu, &Modes.stats_current.reader_cpu);
Modes.reader_cpu_accumulator.tv_sec = 0;
Modes.reader_cpu_accumulator.tv_nsec = 0;
if (Modes.first_free_buffer != Modes.first_filled_buffer) {
// FIFO is not empty, process one buffer.
struct mag_buf *buf;
start_cpu_timing(&start_time);
buf = &Modes.mag_buffers[Modes.first_filled_buffer];
// Process data after releasing the lock, so that the capturing
// thread can read data while we perform computationally expensive
// stuff at the same time.
pthread_mutex_unlock(&Modes.data_mutex);
if (Modes.oversample) {
demodulate2400(buf);
} else {
demodulate2000(buf);
}
Modes.stats_current.samples_processed += buf->length;
Modes.stats_current.samples_dropped += buf->dropped;
end_cpu_timing(&start_time, &Modes.stats_current.demod_cpu);
// Mark the buffer we just processed as completed.
pthread_mutex_lock(&Modes.data_mutex);
Modes.first_filled_buffer = (Modes.first_filled_buffer + 1) % MODES_MAG_BUFFERS;
pthread_cond_signal(&Modes.data_cond);
pthread_mutex_unlock(&Modes.data_mutex);
} else {
// Nothing to process this time around.
pthread_mutex_unlock(&Modes.data_mutex);
}
start_cpu_timing(&start_time);
backgroundTasks();
end_cpu_timing(&start_time, &Modes.stats_current.background_cpu);
pthread_mutex_lock(&Modes.data_mutex);
}
pthread_mutex_unlock(&Modes.data_mutex);
pthread_join(Modes.reader_thread,NULL); // Wait on reader thread exit
pthread_cond_destroy(&Modes.data_cond); // Thread cleanup - only after the reader thread is dead!
pthread_mutex_destroy(&Modes.data_mutex);
}
// If --stats were given, print statistics
if (Modes.stats) {
display_total_stats();
}
cleanup_converter(Modes.converter_state);
log_with_timestamp("Normal exit.");
#ifndef _WIN32
pthread_exit(0);
#else
return (0);
#endif
}
//
//=========================================================================
//