25ea6d398b
The old matching process which tracked mode A values as pseudo-aircraft got very, very expensive with a large number of mode A/C messages (and with lots of single-bit errors, which seems common with a Beast doing the reception) Instead just count A/C messages directly into a 4096-entry array (which is very fast) and periodically scan the mode S aircraft list to see if we can match anything up (which is fixed overhead + cost proportional to the number of mode S aircraft)
1820 lines
58 KiB
C
1820 lines
58 KiB
C
// Part of dump1090, a Mode S message decoder for RTLSDR devices.
|
|
//
|
|
// mode_s.c: Mode S message decoding.
|
|
//
|
|
// Copyright (c) 2014-2016 Oliver Jowett <oliver@mutability.co.uk>
|
|
//
|
|
// This file is free software: you may copy, redistribute and/or modify it
|
|
// under the terms of the GNU General Public License as published by the
|
|
// Free Software Foundation, either version 2 of the License, or (at your
|
|
// option) any later version.
|
|
//
|
|
// This file is distributed in the hope that it will be useful, but
|
|
// WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
// This file incorporates work covered by the following copyright and
|
|
// permission notice:
|
|
//
|
|
// Copyright (C) 2012 by Salvatore Sanfilippo <antirez@gmail.com>
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
#include "dump1090.h"
|
|
|
|
/* for PRIX64 */
|
|
#include <inttypes.h>
|
|
|
|
#include <assert.h>
|
|
|
|
//
|
|
// ===================== Mode S detection and decoding ===================
|
|
//
|
|
//
|
|
//
|
|
|
|
/* A timestamp that indicates the data is synthetic, created from a
|
|
* multilateration result
|
|
*/
|
|
#define MAGIC_MLAT_TIMESTAMP 0xFF004D4C4154ULL
|
|
|
|
//=========================================================================
|
|
//
|
|
// Given the Downlink Format (DF) of the message, return the message length in bits.
|
|
//
|
|
// All known DF's 16 or greater are long. All known DF's 15 or less are short.
|
|
// There are lots of unused codes in both category, so we can assume ICAO will stick to
|
|
// these rules, meaning that the most significant bit of the DF indicates the length.
|
|
//
|
|
int modesMessageLenByType(int type) {
|
|
return (type & 0x10) ? MODES_LONG_MSG_BITS : MODES_SHORT_MSG_BITS ;
|
|
}
|
|
|
|
//
|
|
//=========================================================================
|
|
//
|
|
// In the squawk (identity) field bits are interleaved as follows in
|
|
// (message bit 20 to bit 32):
|
|
//
|
|
// C1-A1-C2-A2-C4-A4-ZERO-B1-D1-B2-D2-B4-D4
|
|
//
|
|
// So every group of three bits A, B, C, D represent an integer from 0 to 7.
|
|
//
|
|
// The actual meaning is just 4 octal numbers, but we convert it into a hex
|
|
// number tha happens to represent the four octal numbers.
|
|
//
|
|
// For more info: http://en.wikipedia.org/wiki/Gillham_code
|
|
//
|
|
static int decodeID13Field(int ID13Field) {
|
|
int hexGillham = 0;
|
|
|
|
if (ID13Field & 0x1000) {hexGillham |= 0x0010;} // Bit 12 = C1
|
|
if (ID13Field & 0x0800) {hexGillham |= 0x1000;} // Bit 11 = A1
|
|
if (ID13Field & 0x0400) {hexGillham |= 0x0020;} // Bit 10 = C2
|
|
if (ID13Field & 0x0200) {hexGillham |= 0x2000;} // Bit 9 = A2
|
|
if (ID13Field & 0x0100) {hexGillham |= 0x0040;} // Bit 8 = C4
|
|
if (ID13Field & 0x0080) {hexGillham |= 0x4000;} // Bit 7 = A4
|
|
//if (ID13Field & 0x0040) {hexGillham |= 0x0800;} // Bit 6 = X or M
|
|
if (ID13Field & 0x0020) {hexGillham |= 0x0100;} // Bit 5 = B1
|
|
if (ID13Field & 0x0010) {hexGillham |= 0x0001;} // Bit 4 = D1 or Q
|
|
if (ID13Field & 0x0008) {hexGillham |= 0x0200;} // Bit 3 = B2
|
|
if (ID13Field & 0x0004) {hexGillham |= 0x0002;} // Bit 2 = D2
|
|
if (ID13Field & 0x0002) {hexGillham |= 0x0400;} // Bit 1 = B4
|
|
if (ID13Field & 0x0001) {hexGillham |= 0x0004;} // Bit 0 = D4
|
|
|
|
return (hexGillham);
|
|
}
|
|
|
|
//
|
|
//=========================================================================
|
|
//
|
|
// Decode the 13 bit AC altitude field (in DF 20 and others).
|
|
// Returns the altitude, and set 'unit' to either UNIT_METERS or UNIT_FEET.
|
|
//
|
|
static int decodeAC13Field(int AC13Field, altitude_unit_t *unit) {
|
|
int m_bit = AC13Field & 0x0040; // set = meters, clear = feet
|
|
int q_bit = AC13Field & 0x0010; // set = 25 ft encoding, clear = Gillham Mode C encoding
|
|
|
|
if (!m_bit) {
|
|
*unit = UNIT_FEET;
|
|
if (q_bit) {
|
|
// N is the 11 bit integer resulting from the removal of bit Q and M
|
|
int n = ((AC13Field & 0x1F80) >> 2) |
|
|
((AC13Field & 0x0020) >> 1) |
|
|
(AC13Field & 0x000F);
|
|
// The final altitude is resulting number multiplied by 25, minus 1000.
|
|
return ((n * 25) - 1000);
|
|
} else {
|
|
// N is an 11 bit Gillham coded altitude
|
|
int n = modeAToModeC(decodeID13Field(AC13Field));
|
|
if (n < -12) {
|
|
return INVALID_ALTITUDE;
|
|
}
|
|
|
|
return (100 * n);
|
|
}
|
|
} else {
|
|
*unit = UNIT_METERS;
|
|
// TODO: Implement altitude when meter unit is selected
|
|
return INVALID_ALTITUDE;
|
|
}
|
|
}
|
|
|
|
//
|
|
//=========================================================================
|
|
//
|
|
// Decode the 12 bit AC altitude field (in DF 17 and others).
|
|
//
|
|
static int decodeAC12Field(int AC12Field, altitude_unit_t *unit) {
|
|
int q_bit = AC12Field & 0x10; // Bit 48 = Q
|
|
|
|
*unit = UNIT_FEET;
|
|
if (q_bit) {
|
|
/// N is the 11 bit integer resulting from the removal of bit Q at bit 4
|
|
int n = ((AC12Field & 0x0FE0) >> 1) |
|
|
(AC12Field & 0x000F);
|
|
// The final altitude is the resulting number multiplied by 25, minus 1000.
|
|
return ((n * 25) - 1000);
|
|
} else {
|
|
// Make N a 13 bit Gillham coded altitude by inserting M=0 at bit 6
|
|
int n = ((AC12Field & 0x0FC0) << 1) |
|
|
(AC12Field & 0x003F);
|
|
n = modeAToModeC(decodeID13Field(n));
|
|
if (n < -12) {
|
|
return INVALID_ALTITUDE;
|
|
}
|
|
|
|
return (100 * n);
|
|
}
|
|
}
|
|
|
|
//
|
|
//=========================================================================
|
|
//
|
|
// Decode the 7 bit ground movement field PWL exponential style scale
|
|
//
|
|
static unsigned decodeMovementField(unsigned movement) {
|
|
int gspeed;
|
|
|
|
// Note : movement codes 0,125,126,127 are all invalid, but they are
|
|
// trapped for before this function is called.
|
|
|
|
if (movement > 123) gspeed = 199; // > 175kt
|
|
else if (movement > 108) gspeed = ((movement - 108) * 5) + 100;
|
|
else if (movement > 93) gspeed = ((movement - 93) * 2) + 70;
|
|
else if (movement > 38) gspeed = ((movement - 38) ) + 15;
|
|
else if (movement > 12) gspeed = ((movement - 11) >> 1) + 2;
|
|
else if (movement > 8) gspeed = ((movement - 6) >> 2) + 1;
|
|
else gspeed = 0;
|
|
|
|
return (gspeed);
|
|
}
|
|
|
|
// Correct a decoded native-endian Address Announced field
|
|
// (from bits 8-31) if it is affected by the given error
|
|
// syndrome. Updates *addr and returns >0 if changed, 0 if
|
|
// it was unaffected.
|
|
static int correct_aa_field(uint32_t *addr, struct errorinfo *ei)
|
|
{
|
|
int i;
|
|
int addr_errors = 0;
|
|
|
|
if (!ei)
|
|
return 0;
|
|
|
|
for (i = 0; i < ei->errors; ++i) {
|
|
if (ei->bit[i] >= 8 && ei->bit[i] <= 31) {
|
|
*addr ^= 1 << (31 - ei->bit[i]);
|
|
++addr_errors;
|
|
}
|
|
}
|
|
|
|
return addr_errors;
|
|
}
|
|
|
|
// The first bit (MSB of the first byte) is numbered 1, for consistency
|
|
// with how the specs number them.
|
|
|
|
// Extract one bit from a message.
|
|
static inline __attribute__((always_inline)) unsigned getbit(unsigned char *data, unsigned bitnum)
|
|
{
|
|
unsigned bi = bitnum - 1;
|
|
unsigned by = bi >> 3;
|
|
unsigned mask = 1 << (7 - (bi & 7));
|
|
|
|
return (data[by] & mask) != 0;
|
|
}
|
|
|
|
// Extract some bits (firstbit .. lastbit inclusive) from a message.
|
|
static inline __attribute__((always_inline)) unsigned getbits(unsigned char *data, unsigned firstbit, unsigned lastbit)
|
|
{
|
|
unsigned fbi = firstbit - 1;
|
|
unsigned lbi = lastbit - 1;
|
|
unsigned nbi = (lastbit - firstbit + 1);
|
|
|
|
unsigned fby = fbi >> 3;
|
|
unsigned lby = lbi >> 3;
|
|
unsigned nby = (lby - fby) + 1;
|
|
|
|
unsigned shift = 7 - (lbi & 7);
|
|
unsigned topmask = 0xFF >> (fbi & 7);
|
|
|
|
assert (fbi <= lbi);
|
|
assert (nbi <= 32);
|
|
assert (nby <= 5);
|
|
|
|
if (nby == 5) {
|
|
return
|
|
((data[fby] & topmask) << (32 - shift)) |
|
|
(data[fby + 1] << (24 - shift)) |
|
|
(data[fby + 2] << (16 - shift)) |
|
|
(data[fby + 3] << (8 - shift)) |
|
|
(data[fby + 4] >> shift);
|
|
} else if (nby == 4) {
|
|
return
|
|
((data[fby] & topmask) << (24 - shift)) |
|
|
(data[fby + 1] << (16 - shift)) |
|
|
(data[fby + 2] << (8 - shift)) |
|
|
(data[fby + 3] >> shift);
|
|
} else if (nby == 3) {
|
|
return
|
|
((data[fby] & topmask) << (16 - shift)) |
|
|
(data[fby + 1] << (8 - shift)) |
|
|
(data[fby + 2] >> shift);
|
|
} else if (nby == 2) {
|
|
return
|
|
((data[fby] & topmask) << (8 - shift)) |
|
|
(data[fby + 1] >> shift);
|
|
} else if (nby == 1) {
|
|
return
|
|
(data[fby] & topmask) >> shift;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// Score how plausible this ModeS message looks.
|
|
// The more positive, the more reliable the message is
|
|
|
|
// 1000: DF 0/4/5/16/24 with a CRC-derived address matching a known aircraft
|
|
|
|
// 1800: DF17/18 with good CRC and an address matching a known aircraft
|
|
// 1400: DF17/18 with good CRC and an address not matching a known aircraft
|
|
// 900: DF17/18 with 1-bit error and an address matching a known aircraft
|
|
// 700: DF17/18 with 1-bit error and an address not matching a known aircraft
|
|
// 450: DF17/18 with 2-bit error and an address matching a known aircraft
|
|
// 350: DF17/18 with 2-bit error and an address not matching a known aircraft
|
|
|
|
// 1600: DF11 with IID==0, good CRC and an address matching a known aircraft
|
|
// 800: DF11 with IID==0, 1-bit error and an address matching a known aircraft
|
|
// 750: DF11 with IID==0, good CRC and an address not matching a known aircraft
|
|
// 375: DF11 with IID==0, 1-bit error and an address not matching a known aircraft
|
|
|
|
// 1000: DF11 with IID!=0, good CRC and an address matching a known aircraft
|
|
// 500: DF11 with IID!=0, 1-bit error and an address matching a known aircraft
|
|
|
|
// 1000: DF20/21 with a CRC-derived address matching a known aircraft
|
|
// 500: DF20/21 with a CRC-derived address matching a known aircraft (bottom 16 bits only - overlay control in use)
|
|
|
|
// -1: message might be valid, but we couldn't validate the CRC against a known ICAO
|
|
// -2: bad message or unrepairable CRC error
|
|
|
|
static unsigned char all_zeros[14] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
|
|
int scoreModesMessage(unsigned char *msg, int validbits)
|
|
{
|
|
int msgtype, msgbits, crc, iid;
|
|
uint32_t addr;
|
|
struct errorinfo *ei;
|
|
|
|
if (validbits < 56)
|
|
return -2;
|
|
|
|
msgtype = getbits(msg, 1, 5); // Downlink Format
|
|
msgbits = modesMessageLenByType(msgtype);
|
|
|
|
if (validbits < msgbits)
|
|
return -2;
|
|
|
|
if (!memcmp(all_zeros, msg, msgbits/8))
|
|
return -2;
|
|
|
|
crc = modesChecksum(msg, msgbits);
|
|
|
|
switch (msgtype) {
|
|
case 0: // short air-air surveillance
|
|
case 4: // surveillance, altitude reply
|
|
case 5: // surveillance, altitude reply
|
|
case 16: // long air-air surveillance
|
|
case 24: // Comm-D (ELM)
|
|
case 25: // Comm-D (ELM)
|
|
case 26: // Comm-D (ELM)
|
|
case 27: // Comm-D (ELM)
|
|
case 28: // Comm-D (ELM)
|
|
case 29: // Comm-D (ELM)
|
|
case 30: // Comm-D (ELM)
|
|
case 31: // Comm-D (ELM)
|
|
return icaoFilterTest(crc) ? 1000 : -1;
|
|
|
|
case 11: // All-call reply
|
|
iid = crc & 0x7f;
|
|
crc = crc & 0xffff80;
|
|
addr = getbits(msg, 9, 32);
|
|
|
|
ei = modesChecksumDiagnose(crc, msgbits);
|
|
if (!ei)
|
|
return -2; // can't correct errors
|
|
|
|
// see crc.c comments: we do not attempt to fix
|
|
// more than single-bit errors, as two-bit
|
|
// errors are ambiguous in DF11.
|
|
if (ei->errors > 1)
|
|
return -2; // can't correct errors
|
|
|
|
// fix any errors in the address field
|
|
correct_aa_field(&addr, ei);
|
|
|
|
// validate address
|
|
if (iid == 0) {
|
|
if (icaoFilterTest(addr))
|
|
return 1600 / (ei->errors + 1);
|
|
else
|
|
return 750 / (ei->errors + 1);
|
|
} else {
|
|
if (icaoFilterTest(addr))
|
|
return 1000 / (ei->errors + 1);
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
case 17: // Extended squitter
|
|
case 18: // Extended squitter/non-transponder
|
|
ei = modesChecksumDiagnose(crc, msgbits);
|
|
if (!ei)
|
|
return -2; // can't correct errors
|
|
|
|
// fix any errors in the address field
|
|
addr = getbits(msg, 9, 32);
|
|
correct_aa_field(&addr, ei);
|
|
|
|
if (icaoFilterTest(addr))
|
|
return 1800 / (ei->errors+1);
|
|
else
|
|
return 1400 / (ei->errors+1);
|
|
|
|
case 20: // Comm-B, altitude reply
|
|
case 21: // Comm-B, identity reply
|
|
if (icaoFilterTest(crc))
|
|
return 1000; // Address/Parity
|
|
|
|
#if 0
|
|
// This doesn't seem useful, as we mistake a lot of CRC errors
|
|
// for overlay control
|
|
if (icaoFilterTestFuzzy(crc))
|
|
return 500; // Data/Parity
|
|
#endif
|
|
|
|
return -2;
|
|
|
|
default:
|
|
// unknown message type
|
|
return -2;
|
|
}
|
|
}
|
|
|
|
//
|
|
//=========================================================================
|
|
//
|
|
// Decode a raw Mode S message demodulated as a stream of bytes by detectModeS(),
|
|
// and split it into fields populating a modesMessage structure.
|
|
//
|
|
|
|
static void decodeExtendedSquitter(struct modesMessage *mm);
|
|
static void decodeCommB(struct modesMessage *mm);
|
|
static char *ais_charset = "@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_ !\"#$%&'()*+,-./0123456789:;<=>?";
|
|
|
|
// return 0 if all OK
|
|
// -1: message might be valid, but we couldn't validate the CRC against a known ICAO
|
|
// -2: bad message or unrepairable CRC error
|
|
|
|
int decodeModesMessage(struct modesMessage *mm, unsigned char *msg)
|
|
{
|
|
// Work on our local copy.
|
|
memcpy(mm->msg, msg, MODES_LONG_MSG_BYTES);
|
|
if (Modes.net_verbatim) {
|
|
// Preserve the original uncorrected copy for later forwarding
|
|
memcpy(mm->verbatim, msg, MODES_LONG_MSG_BYTES);
|
|
}
|
|
msg = mm->msg;
|
|
|
|
// don't accept all-zeros messages
|
|
if (!memcmp(all_zeros, msg, 7))
|
|
return -2;
|
|
|
|
// Get the message type ASAP as other operations depend on this
|
|
mm->msgtype = getbits(msg, 1, 5); // Downlink Format
|
|
mm->msgbits = modesMessageLenByType(mm->msgtype);
|
|
mm->crc = modesChecksum(msg, mm->msgbits);
|
|
mm->correctedbits = 0;
|
|
mm->addr = 0;
|
|
|
|
// Do checksum work and set fields that depend on the CRC
|
|
switch (mm->msgtype) {
|
|
case 0: // short air-air surveillance
|
|
case 4: // surveillance, altitude reply
|
|
case 5: // surveillance, altitude reply
|
|
case 16: // long air-air surveillance
|
|
case 24: // Comm-D (ELM)
|
|
case 25: // Comm-D (ELM)
|
|
case 26: // Comm-D (ELM)
|
|
case 27: // Comm-D (ELM)
|
|
case 28: // Comm-D (ELM)
|
|
case 29: // Comm-D (ELM)
|
|
case 30: // Comm-D (ELM)
|
|
case 31: // Comm-D (ELM)
|
|
// These message types use Address/Parity, i.e. our CRC syndrome is the sender's ICAO address.
|
|
// We can't tell if the CRC is correct or not as we don't know the correct address.
|
|
// Accept the message if it appears to be from a previously-seen aircraft
|
|
if (!icaoFilterTest(mm->crc)) {
|
|
return -1;
|
|
}
|
|
mm->source = SOURCE_MODE_S;
|
|
mm->addr = mm->crc;
|
|
break;
|
|
|
|
case 11: // All-call reply
|
|
// This message type uses Parity/Interrogator, i.e. our CRC syndrome is CL + IC from the uplink message
|
|
// which we can't see. So we don't know if the CRC is correct or not.
|
|
//
|
|
// however! CL + IC only occupy the lower 7 bits of the CRC. So if we ignore those bits when testing
|
|
// the CRC we can still try to detect/correct errors.
|
|
|
|
mm->IID = mm->crc & 0x7f;
|
|
if (mm->crc & 0xffff80) {
|
|
int addr;
|
|
struct errorinfo *ei = modesChecksumDiagnose(mm->crc & 0xffff80, mm->msgbits);
|
|
if (!ei) {
|
|
return -2; // couldn't fix it
|
|
}
|
|
|
|
// see crc.c comments: we do not attempt to fix
|
|
// more than single-bit errors, as two-bit
|
|
// errors are ambiguous in DF11.
|
|
if (ei->errors > 1)
|
|
return -2; // can't correct errors
|
|
|
|
mm->correctedbits = ei->errors;
|
|
modesChecksumFix(msg, ei);
|
|
|
|
// check whether the corrected message looks sensible
|
|
// we are conservative here: only accept corrected messages that
|
|
// match an existing aircraft.
|
|
addr = getbits(msg, 9, 32);
|
|
if (!icaoFilterTest(addr)) {
|
|
return -1;
|
|
}
|
|
}
|
|
mm->source = SOURCE_MODE_S_CHECKED;
|
|
break;
|
|
|
|
case 17: // Extended squitter
|
|
case 18: { // Extended squitter/non-transponder
|
|
struct errorinfo *ei;
|
|
int addr1, addr2;
|
|
|
|
// These message types use Parity/Interrogator, but are specified to set II=0
|
|
|
|
if (mm->crc != 0) {
|
|
ei = modesChecksumDiagnose(mm->crc, mm->msgbits);
|
|
if (!ei) {
|
|
return -2; // couldn't fix it
|
|
}
|
|
|
|
addr1 = getbits(msg, 9, 32);
|
|
mm->correctedbits = ei->errors;
|
|
modesChecksumFix(msg, ei);
|
|
addr2 = getbits(msg, 9, 32);
|
|
|
|
// we are conservative here: only accept corrected messages that
|
|
// match an existing aircraft.
|
|
if (addr1 != addr2 && !icaoFilterTest(addr2)) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
mm->source = SOURCE_ADSB; // TIS-B decoding will override this if needed
|
|
break;
|
|
}
|
|
|
|
case 20: // Comm-B, altitude reply
|
|
case 21: // Comm-B, identity reply
|
|
// These message types either use Address/Parity (see DF0 etc)
|
|
// or Data Parity where the requested BDS is also xored into the top byte.
|
|
// So not only do we not know whether the CRC is right, we also don't know if
|
|
// the ICAO is right! Ow.
|
|
|
|
// Try an exact match
|
|
if (icaoFilterTest(mm->crc)) {
|
|
// OK.
|
|
mm->source = SOURCE_MODE_S;
|
|
mm->addr = mm->crc;
|
|
break;
|
|
}
|
|
|
|
// BDS / overlay control just doesn't work out.
|
|
|
|
return -1; // no good
|
|
|
|
default:
|
|
// All other message types, we don't know how to handle their CRCs, give up
|
|
return -2;
|
|
}
|
|
|
|
// decode the bulk of the message
|
|
|
|
// AA (Address announced)
|
|
if (mm->msgtype == 11 || mm->msgtype == 17 || mm->msgtype == 18) {
|
|
mm->AA = mm->addr = getbits(msg, 9, 32);
|
|
}
|
|
|
|
// AC (Altitude Code)
|
|
if (mm->msgtype == 0 || mm->msgtype == 4 || mm->msgtype == 16 || mm->msgtype == 20) {
|
|
mm->AC = getbits(msg, 20, 32);
|
|
if (mm->AC) { // Only attempt to decode if a valid (non zero) altitude is present
|
|
mm->altitude = decodeAC13Field(mm->AC, &mm->altitude_unit);
|
|
if (mm->altitude != INVALID_ALTITUDE)
|
|
mm->altitude_valid = 1;
|
|
mm->altitude_source = ALTITUDE_BARO;
|
|
}
|
|
}
|
|
|
|
// AF (DF19 Application Field) not decoded
|
|
|
|
// CA (Capability)
|
|
if (mm->msgtype == 11 || mm->msgtype == 17) {
|
|
mm->CA = getbits(msg, 6, 8);
|
|
|
|
switch (mm->CA) {
|
|
case 0:
|
|
mm->airground = AG_UNCERTAIN;
|
|
break;
|
|
case 4:
|
|
mm->airground = AG_GROUND;
|
|
break;
|
|
case 5:
|
|
mm->airground = AG_AIRBORNE;
|
|
break;
|
|
case 6:
|
|
mm->airground = AG_UNCERTAIN;
|
|
break;
|
|
case 7:
|
|
mm->airground = AG_UNCERTAIN;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// CC (Cross-link capability)
|
|
if (mm->msgtype == 0) {
|
|
mm->CC = getbit(msg, 7);
|
|
}
|
|
|
|
// CF (Control field)
|
|
if (mm->msgtype == 18) {
|
|
mm->CF = getbits(msg, 5, 8);
|
|
}
|
|
|
|
// DR (Downlink Request)
|
|
if (mm->msgtype == 4 || mm->msgtype == 5 || mm->msgtype == 20 || mm->msgtype == 21) {
|
|
mm->DR = getbits(msg, 9, 13);
|
|
}
|
|
|
|
// FS (Flight Status)
|
|
if (mm->msgtype == 4 || mm->msgtype == 5 || mm->msgtype == 20 || mm->msgtype == 21) {
|
|
mm->FS = getbits(msg, 6, 8);
|
|
mm->alert_valid = 1;
|
|
mm->spi_valid = 1;
|
|
|
|
switch (mm->FS) {
|
|
case 0:
|
|
mm->airground = AG_UNCERTAIN;
|
|
break;
|
|
case 1:
|
|
mm->airground = AG_GROUND;
|
|
break;
|
|
case 2:
|
|
mm->airground = AG_UNCERTAIN;
|
|
mm->alert = 1;
|
|
break;
|
|
case 3:
|
|
mm->airground = AG_GROUND;
|
|
mm->alert = 1;
|
|
break;
|
|
case 4:
|
|
mm->airground = AG_UNCERTAIN;
|
|
mm->alert = 1;
|
|
mm->spi = 1;
|
|
break;
|
|
case 5:
|
|
mm->airground = AG_UNCERTAIN;
|
|
mm->spi = 1;
|
|
break;
|
|
default:
|
|
mm->spi_valid = 0;
|
|
mm->alert_valid = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// ID (Identity)
|
|
if (mm->msgtype == 5 || mm->msgtype == 21) {
|
|
// Gillham encoded Squawk
|
|
mm->ID = getbits(msg, 20, 32);
|
|
if (mm->ID) {
|
|
mm->squawk = decodeID13Field(mm->ID);
|
|
mm->squawk_valid = 1;
|
|
}
|
|
}
|
|
|
|
// KE (Control, ELM)
|
|
if (mm->msgtype >= 24 && mm->msgtype <= 31) {
|
|
mm->KE = getbit(msg, 4);
|
|
}
|
|
|
|
// MB (messsage, Comm-B)
|
|
if (mm->msgtype == 20 || mm->msgtype == 21) {
|
|
memcpy(mm->MB, &msg[4], 7);
|
|
decodeCommB(mm);
|
|
}
|
|
|
|
// MD (message, Comm-D)
|
|
if (mm->msgtype >= 24 && mm->msgtype <= 31) {
|
|
memcpy(mm->MD, &msg[1], 10);
|
|
}
|
|
|
|
// ME (message, extended squitter)
|
|
if (mm->msgtype == 17 || mm->msgtype == 18) {
|
|
memcpy(mm->ME, &msg[4], 7);
|
|
decodeExtendedSquitter(mm);
|
|
}
|
|
|
|
// MV (message, ACAS)
|
|
if (mm->msgtype == 16) {
|
|
memcpy(mm->MV, &msg[4], 7);
|
|
}
|
|
|
|
// ND (number of D-segment, Comm-D)
|
|
if (mm->msgtype >= 24 && mm->msgtype <= 31) {
|
|
mm->ND = getbits(msg, 5, 8);
|
|
}
|
|
|
|
// RI (Reply information, ACAS)
|
|
if (mm->msgtype == 0 || mm->msgtype == 16) {
|
|
mm->RI = getbits(msg, 14, 17);
|
|
}
|
|
|
|
// SL (Sensitivity level, ACAS)
|
|
if (mm->msgtype == 0 || mm->msgtype == 16) {
|
|
mm->SL = getbits(msg, 9, 11);
|
|
}
|
|
|
|
// UM (Utility Message)
|
|
if (mm->msgtype == 4 || mm->msgtype == 5 || mm->msgtype == 20 || mm->msgtype == 21) {
|
|
mm->UM = getbits(msg, 14, 19);
|
|
}
|
|
|
|
// VS (Vertical Status)
|
|
if (mm->msgtype == 0 || mm->msgtype == 16) {
|
|
mm->VS = getbit(msg, 6);
|
|
if (mm->VS)
|
|
mm->airground = AG_GROUND;
|
|
else
|
|
mm->airground = AG_UNCERTAIN;
|
|
}
|
|
|
|
if (!mm->correctedbits && (mm->msgtype == 17 || mm->msgtype == 18 || (mm->msgtype == 11 && mm->IID == 0))) {
|
|
// No CRC errors seen, and either it was an DF17/18 extended squitter
|
|
// or a DF11 acquisition squitter with II = 0. We probably have the right address.
|
|
|
|
// We wait until here to do this as we may have needed to decode an ES to note
|
|
// the type of address in DF18 messages.
|
|
|
|
// NB this is the only place that adds addresses!
|
|
icaoFilterAdd(mm->addr);
|
|
}
|
|
|
|
// MLAT overrides all other sources
|
|
if (mm->remote && mm->timestampMsg == MAGIC_MLAT_TIMESTAMP)
|
|
mm->source = SOURCE_MLAT;
|
|
|
|
// all done
|
|
return 0;
|
|
}
|
|
|
|
// Decode BDS2,0 carried in Comm-B or ES
|
|
static void decodeBDS20(struct modesMessage *mm)
|
|
{
|
|
unsigned char *msg = mm->msg;
|
|
|
|
mm->callsign[0] = ais_charset[getbits(msg, 41, 46)];
|
|
mm->callsign[1] = ais_charset[getbits(msg, 47, 52)];
|
|
mm->callsign[2] = ais_charset[getbits(msg, 53, 58)];
|
|
mm->callsign[3] = ais_charset[getbits(msg, 59, 64)];
|
|
mm->callsign[4] = ais_charset[getbits(msg, 65, 70)];
|
|
mm->callsign[5] = ais_charset[getbits(msg, 71, 76)];
|
|
mm->callsign[6] = ais_charset[getbits(msg, 77, 82)];
|
|
mm->callsign[7] = ais_charset[getbits(msg, 83, 88)];
|
|
mm->callsign[8] = 0;
|
|
|
|
// Catch possible bad decodings since BDS2,0 is not
|
|
// 100% reliable: accept only alphanumeric data
|
|
mm->callsign_valid = 1;
|
|
for (int i = 0; i < 8; ++i) {
|
|
if (! ((mm->callsign[i] >= 'A' && mm->callsign[i] <= 'Z') ||
|
|
(mm->callsign[i] >= '0' && mm->callsign[i] <= '9') ||
|
|
mm->callsign[i] == ' ') ) {
|
|
mm->callsign_valid = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void decodeESIdentAndCategory(struct modesMessage *mm)
|
|
{
|
|
// Aircraft Identification and Category
|
|
unsigned char *me = mm->ME;
|
|
|
|
mm->mesub = getbits(me, 6, 8);
|
|
|
|
mm->callsign[0] = ais_charset[getbits(me, 9, 14)];
|
|
mm->callsign[1] = ais_charset[getbits(me, 15, 20)];
|
|
mm->callsign[2] = ais_charset[getbits(me, 21, 26)];
|
|
mm->callsign[3] = ais_charset[getbits(me, 27, 32)];
|
|
mm->callsign[4] = ais_charset[getbits(me, 33, 38)];
|
|
mm->callsign[5] = ais_charset[getbits(me, 39, 44)];
|
|
mm->callsign[6] = ais_charset[getbits(me, 45, 50)];
|
|
mm->callsign[7] = ais_charset[getbits(me, 51, 56)];
|
|
|
|
// A common failure mode seems to be to intermittently send
|
|
// all zeros. Catch that here.
|
|
mm->callsign_valid = (strcmp(mm->callsign, "@@@@@@@@") != 0);
|
|
|
|
mm->category = ((0x0E - mm->metype) << 4) | mm->mesub;
|
|
mm->category_valid = 1;
|
|
}
|
|
|
|
// Handle setting a non-ICAO address
|
|
static void setIMF(struct modesMessage *mm)
|
|
{
|
|
mm->addr |= MODES_NON_ICAO_ADDRESS;
|
|
switch (mm->addrtype) {
|
|
case ADDR_ADSB_ICAO:
|
|
case ADDR_ADSB_ICAO_NT:
|
|
// Shouldn't happen, but let's try to handle it
|
|
mm->addrtype = ADDR_ADSB_OTHER;
|
|
break;
|
|
|
|
case ADDR_TISB_ICAO:
|
|
mm->addrtype = ADDR_TISB_TRACKFILE;
|
|
break;
|
|
|
|
case ADDR_ADSR_ICAO:
|
|
mm->addrtype = ADDR_ADSR_OTHER;
|
|
break;
|
|
|
|
default:
|
|
// Nothing.
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void decodeESAirborneVelocity(struct modesMessage *mm, int check_imf)
|
|
{
|
|
// Airborne Velocity Message
|
|
unsigned char *me = mm->ME;
|
|
|
|
mm->mesub = getbits(me, 6, 8);
|
|
|
|
if (check_imf && getbit(me, 9))
|
|
setIMF(mm);
|
|
|
|
if (mm->mesub < 1 || mm->mesub > 4)
|
|
return;
|
|
|
|
unsigned vert_rate = getbits(me, 38, 46);
|
|
if (vert_rate) {
|
|
mm->vert_rate = (vert_rate - 1) * (getbit(me, 37) ? -64 : 64);
|
|
mm->vert_rate_valid = 1;
|
|
}
|
|
|
|
mm->vert_rate_source = (getbit(me, 36) ? ALTITUDE_GNSS : ALTITUDE_BARO);
|
|
|
|
switch (mm->mesub) {
|
|
case 1: case 2:
|
|
{
|
|
unsigned ew_raw = getbits(me, 15, 24);
|
|
unsigned ns_raw = getbits(me, 26, 35);
|
|
|
|
if (ew_raw && ns_raw) {
|
|
int ew_vel = (ew_raw - 1) * (getbit(me, 14) ? -1 : 1) * ((mm->mesub == 2) ? 4 : 1);
|
|
int ns_vel = (ns_raw - 1) * (getbit(me, 25) ? -1 : 1) * ((mm->mesub == 2) ? 4 : 1);
|
|
|
|
// Compute velocity and angle from the two speed components
|
|
mm->speed = (unsigned) sqrt((ns_vel * ns_vel) + (ew_vel * ew_vel) + 0.5);
|
|
mm->speed_valid = 1;
|
|
|
|
if (mm->speed) {
|
|
int heading = (int) (atan2(ew_vel, ns_vel) * 180.0 / M_PI + 0.5);
|
|
// We don't want negative values but a 0-360 scale
|
|
if (heading < 0)
|
|
heading += 360;
|
|
mm->heading = (unsigned) heading;
|
|
mm->heading_source = HEADING_TRUE;
|
|
mm->heading_valid = 1;
|
|
}
|
|
|
|
mm->speed_source = SPEED_GROUNDSPEED;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case 3: case 4:
|
|
{
|
|
unsigned airspeed = getbits(me, 26, 35);
|
|
if (airspeed) {
|
|
mm->speed = (airspeed - 1) * (mm->mesub == 4 ? 4 : 1);
|
|
mm->speed_source = getbit(me, 25) ? SPEED_TAS : SPEED_IAS;
|
|
mm->speed_valid = 1;
|
|
}
|
|
|
|
if (getbit(me, 14)) {
|
|
mm->heading = getbits(me, 15, 24);
|
|
mm->heading_source = HEADING_MAGNETIC;
|
|
mm->heading_valid = 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
unsigned raw_delta = getbits(me, 50, 56);
|
|
if (raw_delta) {
|
|
mm->gnss_delta_valid = 1;
|
|
mm->gnss_delta = (raw_delta - 1) * (getbit(me, 49) ? -25 : 25);
|
|
}
|
|
}
|
|
|
|
static void decodeESSurfacePosition(struct modesMessage *mm, int check_imf)
|
|
{
|
|
// Surface position and movement
|
|
unsigned char *me = mm->ME;
|
|
|
|
if (check_imf && getbit(me, 21))
|
|
setIMF(mm);
|
|
|
|
mm->airground = AG_GROUND; // definitely.
|
|
mm->cpr_lat = getbits(me, 23, 39);
|
|
mm->cpr_lon = getbits(me, 40, 56);
|
|
mm->cpr_odd = getbit(me, 22);
|
|
mm->cpr_nucp = (14 - mm->metype);
|
|
mm->cpr_valid = 1;
|
|
|
|
unsigned movement = getbits(me, 6, 12);
|
|
if (movement > 0 && movement < 125) {
|
|
mm->speed_valid = 1;
|
|
mm->speed = decodeMovementField(movement);
|
|
mm->speed_source = SPEED_GROUNDSPEED;
|
|
}
|
|
|
|
if (getbit(me, 13)) {
|
|
mm->heading_valid = 1;
|
|
mm->heading_source = HEADING_TRUE;
|
|
mm->heading = getbits(me, 14, 20) * 360 / 128;
|
|
}
|
|
}
|
|
|
|
static void decodeESAirbornePosition(struct modesMessage *mm, int check_imf)
|
|
{
|
|
// Airborne position and altitude
|
|
unsigned char *me = mm->ME;
|
|
|
|
if (check_imf && getbit(me, 8))
|
|
setIMF(mm);
|
|
|
|
unsigned AC12Field = getbits(me, 9, 20);
|
|
|
|
if (mm->metype == 0) {
|
|
mm->cpr_nucp = 0;
|
|
} else {
|
|
// Catch some common failure modes and don't mark them as valid
|
|
// (so they won't be used for positioning)
|
|
|
|
mm->cpr_lat = getbits(me, 23, 39);
|
|
mm->cpr_lon = getbits(me, 40, 56);
|
|
|
|
if (AC12Field == 0 && mm->cpr_lon == 0 && (mm->cpr_lat & 0x0fff) == 0 && mm->metype == 15) {
|
|
// Seen from at least:
|
|
// 400F3F (Eurocopter ECC155 B1) - Bristow Helicopters
|
|
// 4008F3 (BAE ATP) - Atlantic Airlines
|
|
// 400648 (BAE ATP) - Atlantic Airlines
|
|
// altitude == 0, longitude == 0, type == 15 and zeros in latitude LSB.
|
|
// Can alternate with valid reports having type == 14
|
|
Modes.stats_current.cpr_filtered++;
|
|
} else {
|
|
// Otherwise, assume it's valid.
|
|
mm->cpr_valid = 1;
|
|
mm->cpr_odd = getbit(me, 22);
|
|
|
|
if (mm->metype == 18 || mm->metype == 22)
|
|
mm->cpr_nucp = 0;
|
|
else if (mm->metype < 18)
|
|
mm->cpr_nucp = (18 - mm->metype);
|
|
else
|
|
mm->cpr_nucp = (29 - mm->metype);
|
|
}
|
|
}
|
|
|
|
if (AC12Field) {// Only attempt to decode if a valid (non zero) altitude is present
|
|
mm->altitude = decodeAC12Field(AC12Field, &mm->altitude_unit);
|
|
if (mm->altitude != INVALID_ALTITUDE) {
|
|
mm->altitude_valid = 1;
|
|
}
|
|
|
|
mm->altitude_source = (mm->metype == 20 || mm->metype == 21 || mm->metype == 22) ? ALTITUDE_GNSS : ALTITUDE_BARO;
|
|
}
|
|
}
|
|
|
|
static void decodeESTestMessage(struct modesMessage *mm)
|
|
{
|
|
unsigned char *me = mm->ME;
|
|
|
|
mm->mesub = getbits(me, 6, 8);
|
|
|
|
if (mm->mesub == 7) { // (see 1090-WP-15-20)
|
|
int ID13Field = getbits(me, 9, 21);
|
|
if (ID13Field) {
|
|
mm->squawk_valid = 1;
|
|
mm->squawk = decodeID13Field(ID13Field);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void decodeESAircraftStatus(struct modesMessage *mm, int check_imf)
|
|
{
|
|
// Extended Squitter Aircraft Status
|
|
unsigned char *me = mm->ME;
|
|
|
|
mm->mesub = getbits(me, 6, 8);
|
|
|
|
if (mm->mesub == 1) { // Emergency status squawk field
|
|
int ID13Field = getbits(me, 12, 24);
|
|
if (ID13Field) {
|
|
mm->squawk_valid = 1;
|
|
mm->squawk = decodeID13Field(ID13Field);
|
|
}
|
|
|
|
if (check_imf && getbit(me, 56))
|
|
setIMF(mm);
|
|
}
|
|
}
|
|
|
|
static void decodeESTargetStatus(struct modesMessage *mm, int check_imf)
|
|
{
|
|
unsigned char *me = mm->ME;
|
|
|
|
mm->mesub = getbits(me, 6, 7); // an unusual message: only 2 bits of subtype
|
|
|
|
if (check_imf && getbit(me, 51))
|
|
setIMF(mm);
|
|
|
|
if (mm->mesub == 0) { // Target state and status, V1
|
|
// TODO: need RTCA/DO-260A
|
|
} else if (mm->mesub == 1) { // Target state and status, V2
|
|
mm->tss.valid = 1;
|
|
mm->tss.sil_type = getbit(me, 8) ? SIL_PER_SAMPLE : SIL_PER_HOUR;
|
|
mm->tss.altitude_type = getbit(me, 9) ? TSS_ALTITUDE_FMS : TSS_ALTITUDE_MCP;
|
|
|
|
unsigned alt_bits = getbits(me, 10, 20);
|
|
if (alt_bits == 0) {
|
|
mm->tss.altitude_valid = 0;
|
|
} else {
|
|
mm->tss.altitude_valid = 1;
|
|
mm->tss.altitude = (alt_bits - 1) * 32;
|
|
}
|
|
|
|
unsigned baro_bits = getbits(me, 21, 29);
|
|
if (baro_bits == 0) {
|
|
mm->tss.baro_valid = 0;
|
|
} else {
|
|
mm->tss.baro_valid = 1;
|
|
mm->tss.baro = 800.0 + (baro_bits - 1) * 0.8;
|
|
}
|
|
|
|
mm->tss.heading_valid = getbit(me, 30);
|
|
if (mm->tss.heading_valid) {
|
|
// two's complement -180..+180, which is conveniently
|
|
// also the same as unsigned 0..360
|
|
mm->tss.heading = getbits(me, 31, 39) * 180 / 256;
|
|
}
|
|
|
|
mm->tss.nac_p = getbits(me, 40, 43);
|
|
mm->tss.nic_baro = getbit(me, 44);
|
|
mm->tss.sil = getbits(me, 45, 46);
|
|
mm->tss.mode_valid = getbit(me, 47);
|
|
if (mm->tss.mode_valid) {
|
|
mm->tss.mode_autopilot = getbit(me, 48);
|
|
mm->tss.mode_vnav = getbit(me, 49);
|
|
mm->tss.mode_alt_hold = getbit(me, 50);
|
|
mm->tss.mode_approach = getbit(me, 52);
|
|
}
|
|
|
|
mm->tss.acas_operational = getbit(me, 53);
|
|
}
|
|
}
|
|
|
|
static void decodeESOperationalStatus(struct modesMessage *mm, int check_imf)
|
|
{
|
|
unsigned char *me = mm->ME;
|
|
|
|
mm->mesub = getbits(me, 6, 8);
|
|
|
|
// Aircraft Operational Status
|
|
if (check_imf && getbit(me, 56))
|
|
setIMF(mm);
|
|
|
|
if (mm->mesub == 0 || mm->mesub == 1) {
|
|
mm->opstatus.valid = 1;
|
|
mm->opstatus.version = getbits(me, 41, 43);
|
|
|
|
switch (mm->opstatus.version) {
|
|
case 0:
|
|
break;
|
|
|
|
case 1:
|
|
if (getbits(me, 25, 26) == 0) {
|
|
mm->opstatus.om_acas_ra = getbit(me, 27);
|
|
mm->opstatus.om_ident = getbit(me, 28);
|
|
mm->opstatus.om_atc = getbit(me, 29);
|
|
}
|
|
|
|
if (mm->mesub == 0 && getbits(me, 9, 10) == 0 && getbits(me, 13, 14) == 0) {
|
|
// airborne
|
|
mm->opstatus.cc_acas = !getbit(me, 11);
|
|
mm->opstatus.cc_cdti = getbit(me, 12);
|
|
mm->opstatus.cc_arv = getbit(me, 15);
|
|
mm->opstatus.cc_ts = getbit(me, 16);
|
|
mm->opstatus.cc_tc = getbits(me, 17, 18);
|
|
} else if (mm->mesub == 1 && getbits(me, 9, 10) == 0 && getbits(me, 13, 14) == 0) {
|
|
// surface
|
|
mm->opstatus.cc_poa = getbit(me, 11);
|
|
mm->opstatus.cc_cdti = getbit(me, 12);
|
|
mm->opstatus.cc_b2_low = getbit(me, 15);
|
|
mm->opstatus.cc_lw_valid = 1;
|
|
mm->opstatus.cc_lw = getbits(me, 21, 24);
|
|
}
|
|
|
|
mm->opstatus.nic_supp_a = getbit(me, 44);
|
|
mm->opstatus.nac_p = getbits(me, 45, 48);
|
|
mm->opstatus.sil = getbits(me, 51, 52);
|
|
if (mm->mesub == 0) {
|
|
mm->opstatus.nic_baro = getbit(me, 53);
|
|
} else {
|
|
mm->opstatus.track_angle = getbit(me, 53) ? ANGLE_TRACK : ANGLE_HEADING;
|
|
}
|
|
mm->opstatus.hrd = getbit(me, 54) ? HEADING_MAGNETIC : HEADING_TRUE;
|
|
break;
|
|
|
|
case 2:
|
|
default:
|
|
if (getbits(me, 25, 26) == 0) {
|
|
mm->opstatus.om_acas_ra = getbit(me, 27);
|
|
mm->opstatus.om_ident = getbit(me, 28);
|
|
mm->opstatus.om_atc = getbit(me, 29);
|
|
mm->opstatus.om_saf = getbit(me, 30);
|
|
mm->opstatus.om_sda = getbits(me, 31, 32);
|
|
}
|
|
|
|
if (mm->mesub == 0 && getbits(me, 9, 10) == 0 && getbits(me, 13, 14) == 0) {
|
|
// airborne
|
|
mm->opstatus.cc_acas = getbit(me, 11);
|
|
mm->opstatus.cc_1090_in = getbit(me, 12);
|
|
mm->opstatus.cc_arv = getbit(me, 15);
|
|
mm->opstatus.cc_ts = getbit(me, 16);
|
|
mm->opstatus.cc_tc = getbits(me, 17, 18);
|
|
mm->opstatus.cc_uat_in = getbit(me, 19);
|
|
} else if (mm->mesub == 1 && getbits(me, 9, 10) == 0 && getbits(me, 13, 14) == 0) {
|
|
// surface
|
|
mm->opstatus.cc_poa = getbit(me, 11);
|
|
mm->opstatus.cc_1090_in = getbit(me, 12);
|
|
mm->opstatus.cc_b2_low = getbit(me, 15);
|
|
mm->opstatus.cc_uat_in = getbit(me, 16);
|
|
mm->opstatus.cc_nac_v = getbits(me, 17, 19);
|
|
mm->opstatus.cc_nic_supp_c = getbit(me, 20);
|
|
mm->opstatus.cc_lw_valid = 1;
|
|
mm->opstatus.cc_lw = getbits(me, 21, 24);
|
|
mm->opstatus.cc_antenna_offset = getbits(me, 33, 40);
|
|
}
|
|
|
|
mm->opstatus.nic_supp_a = getbit(me, 44);
|
|
mm->opstatus.nac_p = getbits(me, 45, 48);
|
|
mm->opstatus.sil = getbits(me, 51, 52);
|
|
if (mm->mesub == 0) {
|
|
mm->opstatus.gva = getbits(me, 49, 50);
|
|
mm->opstatus.nic_baro = getbit(me, 53);
|
|
} else {
|
|
mm->opstatus.track_angle = getbit(me, 53) ? ANGLE_TRACK : ANGLE_HEADING;
|
|
}
|
|
mm->opstatus.hrd = getbit(me, 54) ? HEADING_MAGNETIC : HEADING_TRUE;
|
|
mm->opstatus.sil_type = getbit(me, 55) ? SIL_PER_SAMPLE : SIL_PER_HOUR;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void decodeExtendedSquitter(struct modesMessage *mm)
|
|
{
|
|
unsigned char *me = mm->ME;
|
|
unsigned metype = mm->metype = getbits(me, 1, 5);
|
|
unsigned check_imf = 0;
|
|
|
|
// Check CF on DF18 to work out the format of the ES and whether we need to look for an IMF bit
|
|
if (mm->msgtype == 18) {
|
|
switch (mm->CF) {
|
|
case 0: // ADS-B Message from a non-transponder device, AA field holds 24-bit ICAO aircraft address
|
|
mm->addrtype = ADDR_ADSB_ICAO_NT;
|
|
break;
|
|
|
|
case 1: // Reserved for ADS-B Message in which the AA field holds anonymous address or ground vehicle address or fixed obstruction address
|
|
mm->addrtype = ADDR_ADSB_OTHER;
|
|
mm->addr |= MODES_NON_ICAO_ADDRESS;
|
|
break;
|
|
|
|
case 2: // Fine TIS-B Message
|
|
// IMF=0: AA field contains the 24-bit ICAO aircraft address
|
|
// IMF=1: AA field contains the 12-bit Mode A code followed by a 12-bit track file number
|
|
mm->source = SOURCE_TISB;
|
|
mm->addrtype = ADDR_TISB_ICAO;
|
|
check_imf = 1;
|
|
break;
|
|
|
|
case 3: // Coarse TIS-B airborne position and velocity.
|
|
// IMF=0: AA field contains the 24-bit ICAO aircraft address
|
|
// IMF=1: AA field contains the 12-bit Mode A code followed by a 12-bit track file number
|
|
|
|
// For now we only look at the IMF bit.
|
|
mm->source = SOURCE_TISB;
|
|
mm->addrtype = ADDR_TISB_ICAO;
|
|
if (getbit(me, 1))
|
|
setIMF(mm);
|
|
return;
|
|
|
|
case 5: // Fine TIS-B Message, AA field contains a non-ICAO 24-bit address
|
|
mm->addrtype = ADDR_TISB_OTHER;
|
|
mm->source = SOURCE_TISB;
|
|
mm->addr |= MODES_NON_ICAO_ADDRESS;
|
|
break;
|
|
|
|
case 6: // Rebroadcast of ADS-B Message from an alternate data link
|
|
// IMF=0: AA field holds 24-bit ICAO aircraft address
|
|
// IMF=1: AA field holds anonymous address or ground vehicle address or fixed obstruction address
|
|
mm->addrtype = ADDR_ADSR_ICAO;
|
|
check_imf = 1;
|
|
break;
|
|
|
|
default: // All others, we don't know the format.
|
|
mm->addrtype = ADDR_UNKNOWN;
|
|
mm->addr |= MODES_NON_ICAO_ADDRESS; // assume non-ICAO
|
|
return;
|
|
}
|
|
}
|
|
|
|
switch (metype) {
|
|
case 1: case 2: case 3: case 4:
|
|
decodeESIdentAndCategory(mm);
|
|
break;
|
|
|
|
case 19:
|
|
decodeESAirborneVelocity(mm, check_imf);
|
|
break;
|
|
|
|
case 5: case 6: case 7: case 8:
|
|
decodeESSurfacePosition(mm, check_imf);
|
|
break;
|
|
|
|
case 0: // Airborne position, baro altitude only
|
|
case 9: case 10: case 11: case 12: case 13: case 14: case 15: case 16: case 17: case 18: // Airborne position, baro
|
|
case 20: case 21: case 22: // Airborne position, GNSS altitude (HAE or MSL)
|
|
decodeESAirbornePosition(mm, check_imf);
|
|
break;
|
|
|
|
case 23:
|
|
decodeESTestMessage(mm);
|
|
break;
|
|
|
|
case 24: // Reserved for Surface System Status
|
|
break;
|
|
|
|
case 28:
|
|
decodeESAircraftStatus(mm, check_imf);
|
|
break;
|
|
|
|
case 29:
|
|
decodeESTargetStatus(mm, check_imf);
|
|
break;
|
|
|
|
case 30: // Aircraft Operational Coordination
|
|
break;
|
|
|
|
case 31:
|
|
decodeESOperationalStatus(mm, check_imf);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void decodeCommB(struct modesMessage *mm)
|
|
{
|
|
unsigned char *msg = mm->msg;
|
|
|
|
// This is a bit hairy as we don't know what the requested register was
|
|
if (getbits(msg, 33, 40) == 0x20) { // BDS 2,0 Aircraft Identification
|
|
decodeBDS20(mm);
|
|
}
|
|
}
|
|
|
|
static const char *df_names[33] = {
|
|
/* 0 */ "Short Air-Air Surveillance",
|
|
/* 1 */ NULL,
|
|
/* 2 */ NULL,
|
|
/* 3 */ NULL,
|
|
/* 4 */ "Survelliance, Altitude Reply",
|
|
/* 5 */ "Survelliance, Identity Reply",
|
|
/* 6 */ NULL,
|
|
/* 7 */ NULL,
|
|
/* 8 */ NULL,
|
|
/* 9 */ NULL,
|
|
/* 10 */ NULL,
|
|
/* 11 */ "All Call Reply",
|
|
/* 12 */ NULL,
|
|
/* 13 */ NULL,
|
|
/* 14 */ NULL,
|
|
/* 15 */ NULL,
|
|
/* 16 */ "Long Air-Air ACAS",
|
|
/* 17 */ "Extended Squitter",
|
|
/* 18 */ "Extended Squitter (Non-Transponder)",
|
|
/* 19 */ "Extended Squitter (Military)",
|
|
/* 20 */ "Comm-B, Altitude Reply",
|
|
/* 21 */ "Comm-B, Identity Reply",
|
|
/* 22 */ "Military Use",
|
|
/* 23 */ NULL,
|
|
/* 24 */ "Comm-D Extended Length Message",
|
|
/* 25 */ "Comm-D Extended Length Message",
|
|
/* 26 */ "Comm-D Extended Length Message",
|
|
/* 27 */ "Comm-D Extended Length Message",
|
|
/* 28 */ "Comm-D Extended Length Message",
|
|
/* 29 */ "Comm-D Extended Length Message",
|
|
/* 30 */ "Comm-D Extended Length Message",
|
|
/* 31 */ "Comm-D Extended Length Message",
|
|
/* 32 */ "Mode A/C Reply",
|
|
};
|
|
|
|
static const char *df_to_string(unsigned df) {
|
|
if (df > 32)
|
|
return "out of range";
|
|
if (!df_names[df])
|
|
return "reserved";
|
|
return df_names[df];
|
|
}
|
|
|
|
static const char *altitude_unit_to_string(altitude_unit_t unit) {
|
|
switch (unit) {
|
|
case UNIT_FEET:
|
|
return "ft";
|
|
case UNIT_METERS:
|
|
return "m";
|
|
default:
|
|
return "(unknown altitude unit)";
|
|
}
|
|
}
|
|
|
|
static const char *altitude_source_to_string(altitude_source_t source) {
|
|
switch (source) {
|
|
case ALTITUDE_BARO:
|
|
return "barometric";
|
|
case ALTITUDE_GNSS:
|
|
return "GNSS";
|
|
default:
|
|
return "(unknown altitude source)";
|
|
}
|
|
}
|
|
|
|
static const char *airground_to_string(airground_t airground) {
|
|
switch (airground) {
|
|
case AG_GROUND:
|
|
return "ground";
|
|
case AG_AIRBORNE:
|
|
return "airborne";
|
|
case AG_INVALID:
|
|
return "invalid";
|
|
case AG_UNCERTAIN:
|
|
return "airborne?";
|
|
default:
|
|
return "(unknown airground state)";
|
|
}
|
|
}
|
|
|
|
static const char *speed_source_to_string(speed_source_t speed) {
|
|
switch (speed) {
|
|
case SPEED_GROUNDSPEED:
|
|
return "groundspeed";
|
|
case SPEED_IAS:
|
|
return "IAS";
|
|
case SPEED_TAS:
|
|
return "TAS";
|
|
default:
|
|
return "(unknown speed type)";
|
|
}
|
|
}
|
|
|
|
static const char *addrtype_to_string(addrtype_t type) {
|
|
switch (type) {
|
|
case ADDR_ADSB_ICAO:
|
|
return "Mode S / ADS-B";
|
|
case ADDR_ADSB_ICAO_NT:
|
|
return "ADS-B, non-transponder";
|
|
case ADDR_ADSB_OTHER:
|
|
return "ADS-B, other addressing scheme";
|
|
case ADDR_TISB_ICAO:
|
|
return "TIS-B";
|
|
case ADDR_TISB_OTHER:
|
|
return "TIS-B, other addressing scheme";
|
|
case ADDR_TISB_TRACKFILE:
|
|
return "TIS-B, Mode A code and track file number";
|
|
case ADDR_ADSR_ICAO:
|
|
return "ADS-R";
|
|
case ADDR_ADSR_OTHER:
|
|
return "ADS-R, other addressing scheme";
|
|
case ADDR_MODE_A:
|
|
return "Mode A";
|
|
default:
|
|
return "unknown addressing scheme";
|
|
}
|
|
}
|
|
|
|
static void print_hex_bytes(unsigned char *data, size_t len) {
|
|
size_t i;
|
|
for (i = 0; i < len; ++i) {
|
|
printf("%02X", (unsigned)data[i]);
|
|
}
|
|
}
|
|
|
|
static int esTypeHasSubtype(unsigned metype)
|
|
{
|
|
if (metype <= 18) {
|
|
return 0;
|
|
}
|
|
|
|
if (metype >= 20 && metype <= 22) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static const char *esTypeName(unsigned metype, unsigned mesub)
|
|
{
|
|
switch (metype) {
|
|
case 0:
|
|
return "No position information (airborne or surface)";
|
|
|
|
case 1: case 2: case 3: case 4:
|
|
return "Aircraft identification and category";
|
|
|
|
case 5: case 6: case 7: case 8:
|
|
return "Surface position";
|
|
|
|
case 9: case 10: case 11: case 12:
|
|
case 13: case 14: case 15: case 16:
|
|
case 17: case 18:
|
|
return "Airborne position (barometric altitude)";
|
|
|
|
case 19:
|
|
switch (mesub) {
|
|
case 1:
|
|
return "Airborne velocity over ground, subsonic";
|
|
case 2:
|
|
return "Airborne velocity over ground, supersonic";
|
|
case 3:
|
|
return "Airspeed and heading, subsonic";
|
|
case 4:
|
|
return "Airspeed and heading, supersonic";
|
|
default:
|
|
return "Unknown";
|
|
}
|
|
|
|
case 20: case 21: case 22:
|
|
return "Airborne position (GNSS altitude)";
|
|
|
|
case 23:
|
|
switch (mesub) {
|
|
case 0:
|
|
return "Test message";
|
|
case 7:
|
|
return "National use / 1090-WP-15-20 Mode A squawk";
|
|
default:
|
|
return "Unknown";
|
|
}
|
|
|
|
case 24:
|
|
return "Reserved for surface system status";
|
|
|
|
case 27:
|
|
return "Reserved for trajectory change";
|
|
|
|
case 28:
|
|
switch (mesub) {
|
|
case 1:
|
|
return "Emergency/priority status";
|
|
case 2:
|
|
return "ACAS RA broadcast";
|
|
default:
|
|
return "Unknown";
|
|
}
|
|
|
|
case 29:
|
|
switch (mesub) {
|
|
case 0:
|
|
return "Target state and status (V1)";
|
|
case 1:
|
|
return "Target state and status (V2)";
|
|
default:
|
|
return "Unknown";
|
|
}
|
|
|
|
case 30:
|
|
return "Aircraft Operational Coordination";
|
|
|
|
case 31: // Aircraft Operational Status
|
|
switch (mesub) {
|
|
case 0:
|
|
return "Aircraft operational status (airborne)";
|
|
case 1:
|
|
return "Aircraft operational status (surface)";
|
|
default:
|
|
return "Unknown";
|
|
}
|
|
|
|
default:
|
|
return "Unknown";
|
|
}
|
|
}
|
|
|
|
void displayModesMessage(struct modesMessage *mm) {
|
|
int j;
|
|
|
|
// Handle only addresses mode first.
|
|
if (Modes.onlyaddr) {
|
|
printf("%06x\n", mm->addr);
|
|
return; // Enough for --onlyaddr mode
|
|
}
|
|
|
|
// Show the raw message.
|
|
if (Modes.mlat && mm->timestampMsg) {
|
|
printf("@%012" PRIX64, mm->timestampMsg);
|
|
} else
|
|
printf("*");
|
|
|
|
for (j = 0; j < mm->msgbits/8; j++) printf("%02x", mm->msg[j]);
|
|
printf(";\n");
|
|
|
|
if (Modes.raw) {
|
|
fflush(stdout); // Provide data to the reader ASAP
|
|
return; // Enough for --raw mode
|
|
}
|
|
|
|
if (mm->msgtype < 32)
|
|
printf("CRC: %06x\n", mm->crc);
|
|
|
|
if (mm->correctedbits != 0)
|
|
printf("No. of bit errors fixed: %d\n", mm->correctedbits);
|
|
|
|
if (mm->signalLevel > 0)
|
|
printf("RSSI: %.1f dBFS\n", 10 * log10(mm->signalLevel));
|
|
|
|
if (mm->score)
|
|
printf("Score: %d\n", mm->score);
|
|
|
|
if (mm->timestampMsg) {
|
|
if (mm->timestampMsg == MAGIC_MLAT_TIMESTAMP)
|
|
printf("This is a synthetic MLAT message.\n");
|
|
else
|
|
printf("Time: %.2fus\n", mm->timestampMsg / 12.0);
|
|
}
|
|
|
|
switch (mm->msgtype) {
|
|
case 0:
|
|
printf("DF:0 addr:%06X VS:%u CC:%u SL:%u RI:%u AC:%u\n",
|
|
mm->addr, mm->VS, mm->CC, mm->SL, mm->RI, mm->AC);
|
|
break;
|
|
|
|
case 4:
|
|
printf("DF:4 addr:%06X FS:%u DR:%u UM:%u AC:%u\n",
|
|
mm->addr, mm->FS, mm->DR, mm->UM, mm->AC);
|
|
break;
|
|
|
|
case 5:
|
|
printf("DF:5 addr:%06X FS:%u DR:%u UM:%u ID:%u\n",
|
|
mm->addr, mm->FS, mm->DR, mm->UM, mm->ID);
|
|
break;
|
|
|
|
case 11:
|
|
printf("DF:11 AA:%06X IID:%u CA:%u\n",
|
|
mm->AA, mm->IID, mm->CA);
|
|
break;
|
|
|
|
case 16:
|
|
printf("DF:16 addr:%06x VS:%u SL:%u RI:%u AC:%u MV:",
|
|
mm->addr, mm->VS, mm->SL, mm->RI, mm->AC);
|
|
print_hex_bytes(mm->MV, sizeof(mm->MV));
|
|
printf("\n");
|
|
break;
|
|
|
|
case 17:
|
|
printf("DF:17 AA:%06X CA:%u ME:",
|
|
mm->AA, mm->CA);
|
|
print_hex_bytes(mm->ME, sizeof(mm->ME));
|
|
printf("\n");
|
|
break;
|
|
|
|
case 18:
|
|
printf("DF:18 AA:%06X CF:%u ME:",
|
|
mm->AA, mm->CF);
|
|
print_hex_bytes(mm->ME, sizeof(mm->ME));
|
|
printf("\n");
|
|
break;
|
|
|
|
case 20:
|
|
printf("DF:20 addr:%06X FS:%u DR:%u UM:%u AC:%u MB:",
|
|
mm->addr, mm->FS, mm->DR, mm->UM, mm->AC);
|
|
print_hex_bytes(mm->MB, sizeof(mm->MB));
|
|
printf("\n");
|
|
break;
|
|
|
|
case 21:
|
|
printf("DF:21 addr:%06x FS:%u DR:%u UM:%u ID:%u MB:",
|
|
mm->addr, mm->FS, mm->DR, mm->UM, mm->ID);
|
|
print_hex_bytes(mm->MB, sizeof(mm->MB));
|
|
printf("\n");
|
|
break;
|
|
|
|
case 24:
|
|
case 25:
|
|
case 26:
|
|
case 27:
|
|
case 28:
|
|
case 29:
|
|
case 30:
|
|
case 31:
|
|
printf("DF:24 addr:%06x KE:%u ND:%u MD:",
|
|
mm->addr, mm->KE, mm->ND);
|
|
print_hex_bytes(mm->MD, sizeof(mm->MD));
|
|
printf("\n");
|
|
break;
|
|
}
|
|
|
|
printf(" %s", df_to_string(mm->msgtype));
|
|
if (mm->msgtype == 17 || mm->msgtype == 18) {
|
|
if (esTypeHasSubtype(mm->metype)) {
|
|
printf(" %s (%u/%u)",
|
|
esTypeName(mm->metype, mm->mesub),
|
|
mm->metype,
|
|
mm->mesub);
|
|
} else {
|
|
printf(" %s (%u)",
|
|
esTypeName(mm->metype, mm->mesub),
|
|
mm->metype);
|
|
}
|
|
}
|
|
printf("\n");
|
|
|
|
if (mm->addr & MODES_NON_ICAO_ADDRESS) {
|
|
printf(" Other Address: %06X (%s)\n", mm->addr & 0xFFFFFF, addrtype_to_string(mm->addrtype));
|
|
} else {
|
|
printf(" ICAO Address: %06X (%s)\n", mm->addr, addrtype_to_string(mm->addrtype));
|
|
}
|
|
|
|
if (mm->airground != AG_INVALID) {
|
|
printf(" Air/Ground: %s\n",
|
|
airground_to_string(mm->airground));
|
|
}
|
|
|
|
if (mm->altitude_valid) {
|
|
printf(" Altitude: %d %s %s\n",
|
|
mm->altitude,
|
|
altitude_unit_to_string(mm->altitude_unit),
|
|
altitude_source_to_string(mm->altitude_source));
|
|
}
|
|
|
|
if (mm->gnss_delta_valid) {
|
|
printf(" GNSS delta: %d ft\n",
|
|
mm->gnss_delta);
|
|
}
|
|
|
|
if (mm->heading_valid) {
|
|
printf(" Heading: %u\n", mm->heading);
|
|
}
|
|
|
|
if (mm->speed_valid) {
|
|
printf(" Speed: %u kt %s\n",
|
|
mm->speed,
|
|
speed_source_to_string(mm->speed_source));
|
|
}
|
|
|
|
if (mm->vert_rate_valid) {
|
|
printf(" Vertical rate: %d ft/min %s\n",
|
|
mm->vert_rate,
|
|
altitude_source_to_string(mm->vert_rate_source));
|
|
}
|
|
|
|
if (mm->squawk_valid) {
|
|
printf(" Squawk: %04x\n",
|
|
mm->squawk);
|
|
}
|
|
|
|
if (mm->callsign_valid) {
|
|
printf(" Ident: %s\n",
|
|
mm->callsign);
|
|
}
|
|
|
|
if (mm->category_valid) {
|
|
printf(" Category: %02X\n",
|
|
mm->category);
|
|
}
|
|
|
|
if (mm->msgtype == 17 || mm->msgtype == 18) {
|
|
}
|
|
|
|
if (mm->cpr_valid) {
|
|
printf(" CPR odd flag: %s\n"
|
|
" CPR NUCp/NIC: %u\n",
|
|
mm->cpr_odd ? "odd" : "even",
|
|
mm->cpr_nucp);
|
|
|
|
if (mm->cpr_decoded) {
|
|
printf(" CPR latitude: %.5f (%u)\n"
|
|
" CPR longitude: %.5f (%u)\n"
|
|
" CPR decoding: %s\n",
|
|
mm->decoded_lat,
|
|
mm->cpr_lat,
|
|
mm->decoded_lon,
|
|
mm->cpr_lon,
|
|
mm->cpr_relative ? "local" : "global");
|
|
} else {
|
|
printf(" CPR latitude: (%u)\n"
|
|
" CPR longitude: (%u)\n"
|
|
" CPR decoding: none\n",
|
|
mm->cpr_lat,
|
|
mm->cpr_lon);
|
|
}
|
|
}
|
|
|
|
if (mm->opstatus.valid) {
|
|
printf(" Aircraft Operational Status:\n");
|
|
printf(" Version: %d\n", mm->opstatus.version);
|
|
|
|
printf(" Capability classes: ");
|
|
if (mm->opstatus.cc_acas) printf("ACAS ");
|
|
if (mm->opstatus.cc_cdti) printf("CDTI ");
|
|
if (mm->opstatus.cc_1090_in) printf("1090IN ");
|
|
if (mm->opstatus.cc_arv) printf("ARV ");
|
|
if (mm->opstatus.cc_ts) printf("TS ");
|
|
if (mm->opstatus.cc_tc) printf("TC=%d ", mm->opstatus.cc_tc);
|
|
if (mm->opstatus.cc_uat_in) printf("UATIN ");
|
|
if (mm->opstatus.cc_poa) printf("POA ");
|
|
if (mm->opstatus.cc_b2_low) printf("B2-LOW ");
|
|
if (mm->opstatus.cc_nac_v) printf("NACv=%d ", mm->opstatus.cc_nac_v);
|
|
if (mm->opstatus.cc_nic_supp_c) printf("NIC-C=1 ");
|
|
if (mm->opstatus.cc_lw_valid) printf("L/W=%d ", mm->opstatus.cc_lw);
|
|
if (mm->opstatus.cc_antenna_offset) printf("GPS-OFFSET=%d ", mm->opstatus.cc_antenna_offset);
|
|
printf("\n");
|
|
|
|
printf(" Operational modes: ");
|
|
if (mm->opstatus.om_acas_ra) printf("ACASRA ");
|
|
if (mm->opstatus.om_ident) printf("IDENT ");
|
|
if (mm->opstatus.om_atc) printf("ATC ");
|
|
if (mm->opstatus.om_saf) printf("SAF ");
|
|
if (mm->opstatus.om_sda) printf("SDA=%d ", mm->opstatus.om_sda);
|
|
printf("\n");
|
|
|
|
if (mm->opstatus.nic_supp_a) printf(" NIC-A: %d\n", mm->opstatus.nic_supp_a);
|
|
if (mm->opstatus.nac_p) printf(" NACp: %d\n", mm->opstatus.nac_p);
|
|
if (mm->opstatus.gva) printf(" GVA: %d\n", mm->opstatus.gva);
|
|
if (mm->opstatus.sil) printf(" SIL: %d (%s)\n", mm->opstatus.sil, (mm->opstatus.sil_type == SIL_PER_HOUR ? "per hour" : "per sample"));
|
|
if (mm->opstatus.nic_baro) printf(" NICbaro: %d\n", mm->opstatus.nic_baro);
|
|
|
|
if (mm->mesub == 1)
|
|
printf(" Heading type: %s\n", (mm->opstatus.track_angle == ANGLE_HEADING ? "heading" : "track angle"));
|
|
printf(" Heading reference: %s\n", (mm->opstatus.hrd == HEADING_TRUE ? "true north" : "magnetic north"));
|
|
}
|
|
|
|
if (mm->tss.valid) {
|
|
printf(" Target State and Status:\n");
|
|
if (mm->tss.altitude_valid)
|
|
printf(" Target altitude: %s, %d ft\n", (mm->tss.altitude_type == TSS_ALTITUDE_MCP ? "MCP" : "FMS"), mm->tss.altitude);
|
|
if (mm->tss.baro_valid)
|
|
printf(" Altimeter setting: %.1f millibars\n", mm->tss.baro);
|
|
if (mm->tss.heading_valid)
|
|
printf(" Target heading: %d\n", mm->tss.heading);
|
|
if (mm->tss.mode_valid) {
|
|
printf(" Active modes: ");
|
|
if (mm->tss.mode_autopilot) printf("autopilot ");
|
|
if (mm->tss.mode_vnav) printf("VNAV ");
|
|
if (mm->tss.mode_alt_hold) printf("altitude-hold ");
|
|
if (mm->tss.mode_approach) printf("approach ");
|
|
printf("\n");
|
|
}
|
|
printf(" ACAS: %s\n", mm->tss.acas_operational ? "operational" : "NOT operational");
|
|
printf(" NACp: %d\n", mm->tss.nac_p);
|
|
printf(" NICbaro: %d\n", mm->tss.nic_baro);
|
|
printf(" SIL: %d (%s)\n", mm->tss.sil, (mm->opstatus.sil_type == SIL_PER_HOUR ? "per hour" : "per sample"));
|
|
}
|
|
|
|
printf("\n");
|
|
fflush(stdout);
|
|
}
|
|
|
|
//
|
|
//=========================================================================
|
|
//
|
|
// When a new message is available, because it was decoded from the RTL device,
|
|
// file, or received in the TCP input port, or any other way we can receive a
|
|
// decoded message, we call this function in order to use the message.
|
|
//
|
|
// Basically this function passes a raw message to the upper layers for further
|
|
// processing and visualization
|
|
//
|
|
void useModesMessage(struct modesMessage *mm) {
|
|
struct aircraft *a;
|
|
|
|
++Modes.stats_current.messages_total;
|
|
|
|
// Track aircraft state
|
|
a = trackUpdateFromMessage(mm);
|
|
|
|
// In non-interactive non-quiet mode, display messages on standard output
|
|
if (!Modes.interactive && !Modes.quiet && (!Modes.show_only || mm->addr == Modes.show_only)) {
|
|
displayModesMessage(mm);
|
|
}
|
|
|
|
// Feed output clients.
|
|
// If in --net-verbatim mode, do this for all messages.
|
|
// Otherwise, apply a sanity-check filter and only
|
|
// forward messages when we have seen two of them.
|
|
|
|
if (Modes.net) {
|
|
if (Modes.net_verbatim || mm->msgtype == 32) {
|
|
// Unconditionally send
|
|
modesQueueOutput(mm, a);
|
|
} else if (a->messages > 1) {
|
|
// If this is the second message, and we
|
|
// squelched the first message, then re-emit the
|
|
// first message now.
|
|
if (!Modes.net_verbatim && a && a->messages == 2) {
|
|
modesQueueOutput(&a->first_message, a);
|
|
}
|
|
modesQueueOutput(mm, a);
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// ===================== Mode S detection and decoding ===================
|
|
//
|