// Part of dump1090, a Mode S message decoder for RTLSDR devices. // // demod_2400.c: 2.4MHz Mode S demodulator. // // Copyright (c) 2014,2015 Oliver Jowett // // This file is free software: you may copy, redistribute and/or modify it // under the terms of the GNU General Public License as published by the // Free Software Foundation, either version 2 of the License, or (at your // option) any later version. // // This file is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . #include "dump1090.h" #include #ifdef MODEAC_DEBUG #include #endif // 2.4MHz sampling rate version // // When sampling at 2.4MHz we have exactly 6 samples per 5 symbols. // Each symbol is 500ns wide, each sample is 416.7ns wide // // We maintain a phase offset that is expressed in units of 1/5 of a sample i.e. 1/6 of a symbol, 83.333ns // Each symbol we process advances the phase offset by 6 i.e. 6/5 of a sample, 500ns // // The correlation functions below correlate a 1-0 pair of symbols (i.e. manchester encoded 1 bit) // starting at the given sample, and assuming that the symbol starts at a fixed 0-5 phase offset within // m[0]. They return a correlation value, generally interpreted as >0 = 1 bit, <0 = 0 bit // TODO check if there are better (or more balanced) correlation functions to use here // nb: the correlation functions sum to zero, so we do not need to adjust for the DC offset in the input signal // (adding any constant value to all of m[0..3] does not change the result) static inline int slice_phase0(uint16_t *m) { return 5 * m[0] - 3 * m[1] - 2 * m[2]; } static inline int slice_phase1(uint16_t *m) { return 4 * m[0] - m[1] - 3 * m[2]; } static inline int slice_phase2(uint16_t *m) { return 3 * m[0] + m[1] - 4 * m[2]; } static inline int slice_phase3(uint16_t *m) { return 2 * m[0] + 3 * m[1] - 5 * m[2]; } static inline int slice_phase4(uint16_t *m) { return m[0] + 5 * m[1] - 5 * m[2] - m[3]; } // // Given 'mlen' magnitude samples in 'm', sampled at 2.4MHz, // try to demodulate some Mode S messages. // void demodulate2400(struct mag_buf *mag) { static struct modesMessage zeroMessage; struct modesMessage mm; unsigned char msg1[MODES_LONG_MSG_BYTES], msg2[MODES_LONG_MSG_BYTES], *msg; uint32_t j; unsigned char *bestmsg; int bestscore, bestphase; uint16_t *m = mag->data; uint32_t mlen = mag->length; uint64_t sum_scaled_signal_power = 0; msg = msg1; for (j = 0; j < mlen; j++) { uint16_t *preamble = &m[j]; int high; uint32_t base_signal, base_noise; int try_phase; int msglen; // Look for a message starting at around sample 0 with phase offset 3..7 // Ideal sample values for preambles with different phase // Xn is the first data symbol with phase offset N // // sample#: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 // phase 3: 2/4\0/5\1 0 0 0 0/5\1/3 3\0 0 0 0 0 0 X4 // phase 4: 1/5\0/4\2 0 0 0 0/4\2 2/4\0 0 0 0 0 0 0 X0 // phase 5: 0/5\1/3 3\0 0 0 0/3 3\1/5\0 0 0 0 0 0 0 X1 // phase 6: 0/4\2 2/4\0 0 0 0 2/4\0/5\1 0 0 0 0 0 0 X2 // phase 7: 0/3 3\1/5\0 0 0 0 1/5\0/4\2 0 0 0 0 0 0 X3 // // quick check: we must have a rising edge 0->1 and a falling edge 12->13 if (! (preamble[0] < preamble[1] && preamble[12] > preamble[13]) ) continue; if (preamble[1] > preamble[2] && // 1 preamble[2] < preamble[3] && preamble[3] > preamble[4] && // 3 preamble[8] < preamble[9] && preamble[9] > preamble[10] && // 9 preamble[10] < preamble[11]) { // 11-12 // peaks at 1,3,9,11-12: phase 3 high = (preamble[1] + preamble[3] + preamble[9] + preamble[11] + preamble[12]) / 4; base_signal = preamble[1] + preamble[3] + preamble[9]; base_noise = preamble[5] + preamble[6] + preamble[7]; } else if (preamble[1] > preamble[2] && // 1 preamble[2] < preamble[3] && preamble[3] > preamble[4] && // 3 preamble[8] < preamble[9] && preamble[9] > preamble[10] && // 9 preamble[11] < preamble[12]) { // 12 // peaks at 1,3,9,12: phase 4 high = (preamble[1] + preamble[3] + preamble[9] + preamble[12]) / 4; base_signal = preamble[1] + preamble[3] + preamble[9] + preamble[12]; base_noise = preamble[5] + preamble[6] + preamble[7] + preamble[8]; } else if (preamble[1] > preamble[2] && // 1 preamble[2] < preamble[3] && preamble[4] > preamble[5] && // 3-4 preamble[8] < preamble[9] && preamble[10] > preamble[11] && // 9-10 preamble[11] < preamble[12]) { // 12 // peaks at 1,3-4,9-10,12: phase 5 high = (preamble[1] + preamble[3] + preamble[4] + preamble[9] + preamble[10] + preamble[12]) / 4; base_signal = preamble[1] + preamble[12]; base_noise = preamble[6] + preamble[7]; } else if (preamble[1] > preamble[2] && // 1 preamble[3] < preamble[4] && preamble[4] > preamble[5] && // 4 preamble[9] < preamble[10] && preamble[10] > preamble[11] && // 10 preamble[11] < preamble[12]) { // 12 // peaks at 1,4,10,12: phase 6 high = (preamble[1] + preamble[4] + preamble[10] + preamble[12]) / 4; base_signal = preamble[1] + preamble[4] + preamble[10] + preamble[12]; base_noise = preamble[5] + preamble[6] + preamble[7] + preamble[8]; } else if (preamble[2] > preamble[3] && // 1-2 preamble[3] < preamble[4] && preamble[4] > preamble[5] && // 4 preamble[9] < preamble[10] && preamble[10] > preamble[11] && // 10 preamble[11] < preamble[12]) { // 12 // peaks at 1-2,4,10,12: phase 7 high = (preamble[1] + preamble[2] + preamble[4] + preamble[10] + preamble[12]) / 4; base_signal = preamble[4] + preamble[10] + preamble[12]; base_noise = preamble[6] + preamble[7] + preamble[8]; } else { // no suitable peaks continue; } // Check for enough signal if (base_signal * 2 < 3 * base_noise) // about 3.5dB SNR continue; // Check that the "quiet" bits 6,7,15,16,17 are actually quiet if (preamble[5] >= high || preamble[6] >= high || preamble[7] >= high || preamble[8] >= high || preamble[14] >= high || preamble[15] >= high || preamble[16] >= high || preamble[17] >= high || preamble[18] >= high) { continue; } // try all phases Modes.stats_current.demod_preambles++; bestmsg = NULL; bestscore = -2; bestphase = -1; for (try_phase = 4; try_phase <= 8; ++try_phase) { uint16_t *pPtr; int phase, i, score, bytelen; // Decode all the next 112 bits, regardless of the actual message // size. We'll check the actual message type later pPtr = &m[j+19] + (try_phase/5); phase = try_phase % 5; bytelen = MODES_LONG_MSG_BYTES; for (i = 0; i < bytelen; ++i) { uint8_t theByte = 0; switch (phase) { case 0: theByte = (slice_phase0(pPtr) > 0 ? 0x80 : 0) | (slice_phase2(pPtr+2) > 0 ? 0x40 : 0) | (slice_phase4(pPtr+4) > 0 ? 0x20 : 0) | (slice_phase1(pPtr+7) > 0 ? 0x10 : 0) | (slice_phase3(pPtr+9) > 0 ? 0x08 : 0) | (slice_phase0(pPtr+12) > 0 ? 0x04 : 0) | (slice_phase2(pPtr+14) > 0 ? 0x02 : 0) | (slice_phase4(pPtr+16) > 0 ? 0x01 : 0); phase = 1; pPtr += 19; break; case 1: theByte = (slice_phase1(pPtr) > 0 ? 0x80 : 0) | (slice_phase3(pPtr+2) > 0 ? 0x40 : 0) | (slice_phase0(pPtr+5) > 0 ? 0x20 : 0) | (slice_phase2(pPtr+7) > 0 ? 0x10 : 0) | (slice_phase4(pPtr+9) > 0 ? 0x08 : 0) | (slice_phase1(pPtr+12) > 0 ? 0x04 : 0) | (slice_phase3(pPtr+14) > 0 ? 0x02 : 0) | (slice_phase0(pPtr+17) > 0 ? 0x01 : 0); phase = 2; pPtr += 19; break; case 2: theByte = (slice_phase2(pPtr) > 0 ? 0x80 : 0) | (slice_phase4(pPtr+2) > 0 ? 0x40 : 0) | (slice_phase1(pPtr+5) > 0 ? 0x20 : 0) | (slice_phase3(pPtr+7) > 0 ? 0x10 : 0) | (slice_phase0(pPtr+10) > 0 ? 0x08 : 0) | (slice_phase2(pPtr+12) > 0 ? 0x04 : 0) | (slice_phase4(pPtr+14) > 0 ? 0x02 : 0) | (slice_phase1(pPtr+17) > 0 ? 0x01 : 0); phase = 3; pPtr += 19; break; case 3: theByte = (slice_phase3(pPtr) > 0 ? 0x80 : 0) | (slice_phase0(pPtr+3) > 0 ? 0x40 : 0) | (slice_phase2(pPtr+5) > 0 ? 0x20 : 0) | (slice_phase4(pPtr+7) > 0 ? 0x10 : 0) | (slice_phase1(pPtr+10) > 0 ? 0x08 : 0) | (slice_phase3(pPtr+12) > 0 ? 0x04 : 0) | (slice_phase0(pPtr+15) > 0 ? 0x02 : 0) | (slice_phase2(pPtr+17) > 0 ? 0x01 : 0); phase = 4; pPtr += 19; break; case 4: theByte = (slice_phase4(pPtr) > 0 ? 0x80 : 0) | (slice_phase1(pPtr+3) > 0 ? 0x40 : 0) | (slice_phase3(pPtr+5) > 0 ? 0x20 : 0) | (slice_phase0(pPtr+8) > 0 ? 0x10 : 0) | (slice_phase2(pPtr+10) > 0 ? 0x08 : 0) | (slice_phase4(pPtr+12) > 0 ? 0x04 : 0) | (slice_phase1(pPtr+15) > 0 ? 0x02 : 0) | (slice_phase3(pPtr+17) > 0 ? 0x01 : 0); phase = 0; pPtr += 20; break; } msg[i] = theByte; if (i == 0) { switch (msg[0] >> 3) { case 0: case 4: case 5: case 11: bytelen = MODES_SHORT_MSG_BYTES; break; case 16: case 17: case 18: case 20: case 21: case 24: break; default: bytelen = 1; // unknown DF, give up immediately break; } } } // Score the mode S message and see if it's any good. score = scoreModesMessage(msg, i*8); if (score > bestscore) { // new high score! bestmsg = msg; bestscore = score; bestphase = try_phase; // swap to using the other buffer so we don't clobber our demodulated data // (if we find a better result then we'll swap back, but that's OK because // we no longer need this copy if we found a better one) msg = (msg == msg1) ? msg2 : msg1; } } // Do we have a candidate? if (bestscore < 0) { if (bestscore == -1) Modes.stats_current.demod_rejected_unknown_icao++; else Modes.stats_current.demod_rejected_bad++; continue; // nope. } msglen = modesMessageLenByType(bestmsg[0] >> 3); // Set initial mm structure details mm = zeroMessage; // For consistency with how the Beast / Radarcape does it, // we report the timestamp at the end of bit 56 (even if // the frame is a 112-bit frame) mm.timestampMsg = mag->sampleTimestamp + j*5 + (8 + 56) * 12 + bestphase; // compute message receive time as block-start-time + difference in the 12MHz clock mm.sysTimestampMsg = mag->sysTimestamp; // start of block time mm.sysTimestampMsg.tv_nsec += receiveclock_ns_elapsed(mag->sampleTimestamp, mm.timestampMsg); normalize_timespec(&mm.sysTimestampMsg); mm.score = bestscore; // Decode the received message { int result = decodeModesMessage(&mm, bestmsg); if (result < 0) { if (result == -1) Modes.stats_current.demod_rejected_unknown_icao++; else Modes.stats_current.demod_rejected_bad++; continue; } else { Modes.stats_current.demod_accepted[mm.correctedbits]++; } } // measure signal power { double signal_power; uint64_t scaled_signal_power = 0; int signal_len = msglen*12/5; int k; for (k = 0; k < signal_len; ++k) { uint32_t mag = m[j+19+k]; scaled_signal_power += mag * mag; } signal_power = scaled_signal_power / 65535.0 / 65535.0; mm.signalLevel = signal_power / signal_len; Modes.stats_current.signal_power_sum += signal_power; Modes.stats_current.signal_power_count += signal_len; sum_scaled_signal_power += scaled_signal_power; if (mm.signalLevel > Modes.stats_current.peak_signal_power) Modes.stats_current.peak_signal_power = mm.signalLevel; if (mm.signalLevel > 0.50119) Modes.stats_current.strong_signal_count++; // signal power above -3dBFS } // Skip over the message: // (we actually skip to 8 bits before the end of the message, // because we can often decode two messages that *almost* collide, // where the preamble of the second message clobbered the last // few bits of the first message, but the message bits didn't // overlap) j += msglen*12/5; // Pass data to the next layer useModesMessage(&mm); } /* update noise power */ { double sum_signal_power = sum_scaled_signal_power / 65535.0 / 65535.0; Modes.stats_current.noise_power_sum += (mag->mean_power * mag->length - sum_signal_power); Modes.stats_current.noise_power_count += mag->length; } } #ifdef MODEAC_DEBUG static int yscale(unsigned signal) { return (int) (299 - 299.0 * signal / 65536.0); } static void draw_modeac(uint16_t *m, unsigned modeac, unsigned f1_clock, unsigned noise_threshold, unsigned signal_threshold, unsigned bits, unsigned noisy_bits, unsigned uncertain_bits) { // 25 bits at 87*60MHz // use 1 pixel = 30MHz = 1087 pixels gdImagePtr im = gdImageCreate(1088, 300); int red = gdImageColorAllocate(im, 255, 0, 0); int brightgreen = gdImageColorAllocate(im, 0, 255, 0); int darkgreen = gdImageColorAllocate(im, 0, 180, 0); int blue = gdImageColorAllocate(im, 0, 0, 255); int grey = gdImageColorAllocate(im, 200, 200, 200); int white = gdImageColorAllocate(im, 255, 255, 255); int black = gdImageColorAllocate(im, 0, 0, 0); gdImageFilledRectangle(im, 0, 0, 1087, 299, white); // draw samples for (unsigned pixel = 0; pixel < 1088; ++pixel) { int clock_offset = (pixel - 150) * 2; int bit = clock_offset / 87; int sample = (f1_clock + clock_offset) / 25; int bitoffset = clock_offset % 87; int color; if (sample < 0) continue; if (clock_offset < 0 || bit >= 20) { color = grey; } else if (bitoffset < 27 && (uncertain_bits & (1 << (19-bit)))) { color = red; } else if (bitoffset >= 27 && (noisy_bits & (1 << (19-bit)))) { color = red; } else if (bitoffset >= 27) { color = grey; } else if (bits & (1 << (19-bit))) { color = brightgreen; } else { color = darkgreen; } gdImageLine(im, pixel, 299, pixel, yscale(m[sample]), color); } // draw bit boundaries for (unsigned bit = 0; bit < 20; ++bit) { unsigned clock = 87 * bit; unsigned pixel0 = clock / 2 + 150; unsigned pixel1 = (clock + 27) / 2 + 150; gdImageLine(im, pixel0, 0, pixel0, 299, (bit == 0 || bit == 14) ? black : grey); gdImageLine(im, pixel1, 0, pixel1, 299, (bit == 0 || bit == 14) ? black : grey); } // draw thresholds gdImageLine(im, 0, yscale(noise_threshold), 1087, yscale(noise_threshold), blue); gdImageLine(im, 0, yscale(signal_threshold), 1087, yscale(signal_threshold), blue); // save it static int file_counter; char filename[PATH_MAX]; sprintf(filename, "modeac_%04X_%04d.png", modeac, ++file_counter); fprintf(stderr, "writing %s\n", filename); FILE *pngout = fopen(filename, "wb"); gdImagePng(im, pngout); fclose(pngout); gdImageDestroy(im); } #endif ////////// ////////// MODE A/C ////////// // Mode A/C bits are 1.45us wide, consisting of 0.45us on and 1.0us off // We track this in terms of a (virtual) 60MHz clock, which is the lowest common multiple // of the bit frequency and the 2.4MHz sampling frequency // // 0.45us = 27 cycles } // 1.00us = 60 cycles } one bit period = 1.45us = 87 cycles // // one 2.4MHz sample = 25 cycles void demodulate2400AC(struct mag_buf *mag) { struct modesMessage mm; uint16_t *m = mag->data; uint32_t mlen = mag->length; unsigned f1_sample; memset(&mm, 0, sizeof(mm)); double noise_stddev = sqrt(mag->mean_power - mag->mean_level * mag->mean_level); // Var(X) = E[(X-E[X])^2] = E[X^2] - (E[X])^2 unsigned noise_level = (unsigned) ((mag->mean_power + noise_stddev) * 65535 + 0.5); for (f1_sample = 1; f1_sample < mlen; ++f1_sample) { // Mode A/C messages should match this bit sequence: // bit # value // -1 0 quiet zone // 0 1 framing pulse (F1) // 1 C1 // 2 A1 // 3 C2 // 4 A2 // 5 C4 // 6 A4 // 7 0 quiet zone (X1) // 8 B1 // 9 D1 // 10 B2 // 11 D2 // 12 B4 // 13 D4 // 14 1 framing pulse (F2) // 15 0 quiet zone (X2) // 16 0 quiet zone (X3) // 17 SPI // 18 0 quiet zone (X4) // 19 0 quiet zone (X5) // Look for a F1 and F2 pair, // with F1 starting at offset f1_sample. // the first framing pulse covers 3.5 samples: // // |----| |----| // | F1 |________| C1 |_ // // | 0 | 1 | 2 | 3 | 4 | // // and there is some unknown phase offset of the // leading edge e.g.: // // |----| |----| // __| F1 |________| C1 |_ // // | 0 | 1 | 2 | 3 | 4 | // // in theory the "on" period can straddle 3 samples // but it's not a big deal as at most 4% of the power // is in the third sample. if (!(m[f1_sample-1] < m[f1_sample+0])) continue; // not a rising edge if (m[f1_sample+2] > m[f1_sample+0] || m[f1_sample+2] > m[f1_sample+1]) continue; // quiet part of bit wasn't sufficiently quiet unsigned f1_level = (m[f1_sample+0] + m[f1_sample+1]) / 2; if (noise_level * 2 > f1_level) { // require 6dB above noise continue; } // estimate initial clock phase based on the amount of power // that ended up in the second sample float f1a_power = (float)m[f1_sample] * m[f1_sample]; float f1b_power = (float)m[f1_sample+1] * m[f1_sample+1]; float fraction = f1b_power / (f1a_power + f1b_power); unsigned f1_clock = (unsigned) (25 * (f1_sample + fraction * fraction) + 0.5); // same again for F2 // F2 is 20.3us / 14 bit periods after F1 unsigned f2_clock = f1_clock + (87 * 14); unsigned f2_sample = f2_clock / 25; assert(f2_sample < mlen + Modes.trailing_samples); if (!(m[f2_sample-1] < m[f2_sample+0])) continue; if (m[f2_sample+2] > m[f2_sample+0] || m[f2_sample+2] > m[f2_sample+1]) continue; // quiet part of bit wasn't sufficiently quiet unsigned f2_level = (m[f2_sample+0] + m[f2_sample+1]) / 2; if (noise_level * 2 > f2_level) { // require 6dB above noise continue; } unsigned f1f2_level = (f1_level > f2_level ? f1_level : f2_level); float midpoint = sqrtf(noise_level * f1f2_level); // geometric mean of the two levels unsigned signal_threshold = (unsigned) (midpoint * M_SQRT2 + 0.5); // +3dB unsigned noise_threshold = (unsigned) (midpoint / M_SQRT2 + 0.5); // -3dB // Looks like a real signal. Demodulate all the bits. unsigned uncertain_bits = 0; unsigned noisy_bits = 0; unsigned bits = 0; unsigned bit; unsigned clock; for (bit = 0, clock = f1_clock; bit < 20; ++bit, clock += 87) { unsigned sample = clock / 25; bits <<= 1; noisy_bits <<= 1; uncertain_bits <<= 1; // check for excessive noise in the quiet period if (m[sample+2] >= signal_threshold) { noisy_bits |= 1; } // decide if this bit is on or off if (m[sample+0] >= signal_threshold || m[sample+1] >= signal_threshold) { bits |= 1; } else if (m[sample+0] > noise_threshold && m[sample+1] > noise_threshold) { /* not certain about this bit */ uncertain_bits |= 1; } else { /* this bit is off */ } } // framing bits must be on if ((bits & 0x80020) != 0x80020) { continue; } // quiet bits must be off if ((bits & 0x0101B) != 0) { continue; } if (noisy_bits || uncertain_bits) { continue; } // Convert to the form that we use elsewhere: // 00 A4 A2 A1 00 B4 B2 B1 SPI C4 C2 C1 00 D4 D2 D1 unsigned modeac = ((bits & 0x40000) ? 0x0010 : 0) | // C1 ((bits & 0x20000) ? 0x1000 : 0) | // A1 ((bits & 0x10000) ? 0x0020 : 0) | // C2 ((bits & 0x08000) ? 0x2000 : 0) | // A2 ((bits & 0x04000) ? 0x0040 : 0) | // C4 ((bits & 0x02000) ? 0x4000 : 0) | // A4 ((bits & 0x00800) ? 0x0100 : 0) | // B1 ((bits & 0x00400) ? 0x0001 : 0) | // D1 ((bits & 0x00200) ? 0x0200 : 0) | // B2 ((bits & 0x00100) ? 0x0002 : 0) | // D2 ((bits & 0x00080) ? 0x0400 : 0) | // B4 ((bits & 0x00040) ? 0x0004 : 0) | // D4 ((bits & 0x00004) ? 0x0080 : 0); // SPI #ifdef MODEAC_DEBUG draw_modeac(m, modeac, f1_clock, noise_threshold, signal_threshold, bits, noisy_bits, uncertain_bits); #endif // This message looks good, submit it // For consistency with how the Beast / Radarcape does it, // we report the timestamp at the second framing pulse (F2) mm.timestampMsg = mag->sampleTimestamp + f2_clock / 5; // 60MHz -> 12MHz // compute message receive time as block-start-time + difference in the 12MHz clock mm.sysTimestampMsg = mag->sysTimestamp; // start of block time mm.sysTimestampMsg.tv_nsec += receiveclock_ns_elapsed(mag->sampleTimestamp, mm.timestampMsg); normalize_timespec(&mm.sysTimestampMsg); decodeModeAMessage(&mm, modeac); // Pass data to the next layer useModesMessage(&mm); f1_sample += (20*87 / 25); Modes.stats_current.demod_modeac++; } }