Merge branch 'upstream'

This commit is contained in:
Oliver Jowett 2016-03-24 22:05:54 +00:00
commit bdc1613512
6 changed files with 347 additions and 35 deletions

View file

@ -470,3 +470,297 @@ void demodulate2400(struct mag_buf *mag)
} }
} }
//////////
////////// MODE A/C
//////////
// Mode A/C bits are 1.45us wide, consisting of 0.45us on and 1.0us off
// We track this in terms of a (virtual) 60MHz clock, which is the lowest common multiple
// of the bit frequency and the 2.4MHz sampling frequency
//
// 0.45us = 27 cycles }
// 1.00us = 60 cycles } one bit period = 1.45us = 87 cycles
//
// one 2.4MHz sample = 25 cycles
void demodulate2400AC(struct mag_buf *mag)
{
struct modesMessage mm;
uint16_t *m = mag->data;
uint32_t mlen = mag->length;
unsigned f1_sample;
memset(&mm, 0, sizeof(mm));
for (f1_sample = 1; f1_sample < mlen; ++f1_sample) {
// Mode A/C messages should match this bit sequence:
// bit # value
// -1 0 quiet zone
// 0 1 framing pulse (F1)
// 1 C1
// 2 A1
// 3 C2
// 4 A2
// 5 C4
// 6 A4
// 7 0 quiet zone (X1)
// 8 B1
// 9 D1
// 10 B2
// 11 D2
// 12 B4
// 13 D4
// 14 1 framing pulse (F2)
// 15 0 quiet zone (X2)
// 16 0 quiet zone (X3)
// 17 SPI
// 18 0 quiet zone (X4)
// 19 0 quiet zone (X5)
// 20 0 quiet zone (X6)
// 21 0 quiet zone (X7)
// 22 0 quiet zone (X8)
// 23 0 quiet zone (X9)
// Look for a F1 and F2 pair,
// with F1 starting at offset f1_sample.
// the first framing pulse covers 3.5 samples:
//
// |----| |----|
// | F1 |________| C1 |_
//
// | 0 | 1 | 2 | 3 | 4 |
//
// and there is some unknown phase offset of the
// leading edge e.g.:
//
// |----| |----|
// __| F1 |________| C1 |_
//
// | 0 | 1 | 2 | 3 | 4 |
//
// in theory the "on" period can straddle 3 samples
// but it's not a big deal as at most 4% of the power
// is in the third sample.
if (!(m[f1_sample-1] < m[f1_sample+0]))
continue; // not a rising edge
if (m[f1_sample+2] > m[f1_sample+0] || m[f1_sample+2] > m[f1_sample+1])
continue; // quiet part of bit wasn't sufficiently quiet
unsigned f1_noise = (m[f1_sample-1] + m[f1_sample+2]) / 2;
unsigned f1_signal = (m[f1_sample+0] + m[f1_sample+1]) / 2;
if (f1_noise * 4 > f1_signal) {
// require 12dB SNR
continue;
}
// estimate initial clock phase based on the amount of power
// that ended up in the second sample
unsigned f1_clock = 25 * f1_sample;
if (m[f1_sample+1] > f1_noise) {
f1_clock += 25 * (m[f1_sample+1] - f1_noise) / (2*(f1_signal - f1_noise));
}
// same again for F2
// F2 is 20.3us / 14 bit periods after F1
unsigned f2_clock = f1_clock + (87 * 14);
unsigned f2_sample = f2_clock / 25;
if (!(m[f2_sample-1] < m[f2_sample+0]))
continue;
if (m[f2_sample+2] > m[f2_sample+0] || m[f2_sample+2] > m[f2_sample+1])
continue; // quiet part of bit wasn't sufficiently quiet
unsigned f2_noise = (m[f2_sample-1] + m[f2_sample+2]) / 2;
unsigned f2_signal = (m[f2_sample+0] + m[f2_sample+1]) / 2;
if (f2_noise * 4 > f2_signal) {
// require 12dB SNR
continue;
}
unsigned f1f2_signal = (f1_signal + f2_signal) / 2;
// look at X1, X2, X3 which should be quiet
// (sample 0 may have part of the previous bit, but
// it always covers the quiet part of it)
unsigned x1_clock = f1_clock + (87 * 7);
unsigned x1_sample = x1_clock / 25;
unsigned x1_noise = (m[x1_sample + 0] + m[x1_sample + 1] + m[x1_sample + 2]) / 3;
if (x1_noise * 4 >= f1f2_signal)
continue;
unsigned x2_clock = f1_clock + (87 * 15);
unsigned x2_sample = x2_clock / 25;
unsigned x2_noise = (m[x2_sample + 0] + m[x2_sample + 1] + m[x2_sample + 2]) / 3;
if (x2_noise * 4 >= f1f2_signal)
continue;
unsigned x3_clock = f1_clock + (87 * 16);
unsigned x3_sample = x3_clock / 25;
unsigned x3_noise = (m[x3_sample + 0] + m[x3_sample + 1] + m[x3_sample + 2]) / 3;
if (x3_noise * 4 >= f1f2_signal)
continue;
unsigned x1x2x3_noise = (x1_noise + x2_noise + x3_noise) / 3;
if (x1x2x3_noise * 4 >= f1f2_signal) // require 12dB separation
continue;
// ----- F1/F2 average signal
// ^
// | at least 3dB
// v
// ----- minimum signal level we accept as "on"
// ^
// | 3dB
// v
// ---- midpoint between F1/F2 and X1/X2/X3
// ^
// | 3dB
// v
// ----- maximum signal level we accept as "off"
// ^
// | at least 3dB
// v
// ----- X1/X2/X3 average noise
float midpoint = sqrtf(x1x2x3_noise * f1f2_signal); // so that signal/midpoint == midpoint/noise
unsigned noise_threshold = (unsigned) (midpoint * 0.707107 + 0.5); // -3dB from midpoint
unsigned signal_threshold = (unsigned) (midpoint * 1.414214 + 0.5); // +3dB from midpoint
#if 0
fprintf(stderr, "f1f2 %u x1x2x3 %u midpoint %.0f noise_threshold %u signal_threshold %u\n",
f1f2_signal, x1x2x3_noise, midpoint, noise_threshold, signal_threshold);
fprintf(stderr, "f1 %u f2 %u x1 %u x2 %u x3 %u\n",
f1_signal, f2_signal, x1_noise, x2_noise, x3_noise);
#endif
// recheck F/X bits just in case
if (f1_signal < signal_threshold)
continue;
if (f2_signal < signal_threshold)
continue;
if (x1_noise > noise_threshold)
continue;
if (x2_noise > noise_threshold)
continue;
if (x3_noise > noise_threshold)
continue;
// Looks like a real signal. Demodulate all the bits.
unsigned noisy_bits = 0;
unsigned bits = 0;
unsigned bit;
unsigned clock;
for (bit = 0, clock = f1_clock; bit < 24; ++bit, clock += 87) {
unsigned sample = clock / 25;
bits <<= 1;
noisy_bits <<= 1;
// check for excessive noise in the quiet period
if (m[sample+2] >= noise_threshold) {
//fprintf(stderr, "bit %u was not quiet (%u > %u)\n", bit, m[sample+2], signal_threshold);
noisy_bits |= 1;
continue;
}
// decide if this bit is on or off
unsigned bit_signal = (m[sample+0] + m[sample+1]) / 2;
if (bit_signal >= signal_threshold) {
bits |= 1;
} else if (bit_signal > noise_threshold) {
/* not certain about this bit */
//fprintf(stderr, "bit %u was uncertain (%u < %u < %u)\n", bit, noise_threshold, bit_signal, signal_threshold);
noisy_bits |= 1;
} else {
/* this bit is off */
}
}
#if 0
fprintf(stderr, "bits: %06X noisy: %06X\n", bits, noisy_bits);
unsigned j, sample;
static const char *names[24] = {
"F1", "C1", "A1", "C2",
"A2", "C4", "A4", "X1",
"B1", "D1", "B2", "D2",
"B4", "D4", "F2", "X2",
"X3", "SPI", "X4", "X5",
"X6", "X7", "X8", "X9"
};
fprintf(stderr, "-1 ... %6u\n", m[f1_sample-1]);
for (j = 0; j < 24; ++j) {
clock = f1_clock + 87 * j;
sample = clock / 25;
fprintf(stderr, "%2u %-3s %6u %6u %6u %6u ", j, names[j], m[sample+0], m[sample+1], m[sample+2], m[sample+3]);
if ((m[sample+0] + m[sample+1])/2 >= signal_threshold) {
fprintf(stderr, "ON\n");
} else if ((m[sample+0] + m[sample+1])/2 <= noise_threshold) {
fprintf(stderr, "OFF\n");
} else {
fprintf(stderr, "UNCERTAIN\n");
}
}
#endif
if (noisy_bits) {
/* XX debug */
continue;
}
// framing bits must be on
if ((bits & 0x800200) != 0x800200) {
continue;
}
// quiet bits must be off
if ((bits & 0x0101BF) != 0) {
continue;
}
// Convert to the form that we use elsewhere:
// 00 A4 A2 A1 00 B4 B2 B1 SPI C4 C2 C1 00 D4 D2 D1
unsigned modeac =
((bits & 0x400000) ? 0x0010 : 0) | // C1
((bits & 0x200000) ? 0x1000 : 0) | // A1
((bits & 0x100000) ? 0x0020 : 0) | // C2
((bits & 0x080000) ? 0x2000 : 0) | // A2
((bits & 0x040000) ? 0x0040 : 0) | // C4
((bits & 0x020000) ? 0x4000 : 0) | // A4
((bits & 0x008000) ? 0x0100 : 0) | // B1
((bits & 0x004000) ? 0x0001 : 0) | // D1
((bits & 0x002000) ? 0x0200 : 0) | // B2
((bits & 0x001000) ? 0x0002 : 0) | // D2
((bits & 0x000800) ? 0x0400 : 0) | // B4
((bits & 0x000400) ? 0x0004 : 0) | // D4
((bits & 0x000040) ? 0x0080 : 0); // SPI
// This message looks good, submit it
// compute message receive time as block-start-time + difference in the 12MHz clock
mm.timestampMsg = mag->sampleTimestamp + f1_clock / 5; // 60MHz -> 12MHz
mm.sysTimestampMsg = mag->sysTimestamp; // start of block time
mm.sysTimestampMsg.tv_nsec += receiveclock_ns_elapsed(mag->sampleTimestamp, mm.timestampMsg);
normalize_timespec(&mm.sysTimestampMsg);
decodeModeAMessage(&mm, modeac);
// Pass data to the next layer
useModesMessage(&mm);
f1_sample += (24*87 / 25);
Modes.stats_current.demod_modeac++;
}
}

View file

@ -25,5 +25,6 @@
struct mag_buf; struct mag_buf;
void demodulate2400(struct mag_buf *mag); void demodulate2400(struct mag_buf *mag);
void demodulate2400AC(struct mag_buf *mag);
#endif #endif

View file

@ -294,10 +294,13 @@ int modesInitRTLSDR(void) {
fprintf(stderr, "Found %d device(s):\n", device_count); fprintf(stderr, "Found %d device(s):\n", device_count);
for (j = 0; j < device_count; j++) { for (j = 0; j < device_count; j++) {
rtlsdr_get_device_usb_strings(j, vendor, product, serial); if (rtlsdr_get_device_usb_strings(j, vendor, product, serial) != 0) {
fprintf(stderr, "%d: unable to read device details\n", j);
} else {
fprintf(stderr, "%d: %s, %s, SN: %s %s\n", j, vendor, product, serial, fprintf(stderr, "%d: %s, %s, SN: %s %s\n", j, vendor, product, serial,
(j == dev_index) ? "(currently selected)" : ""); (j == dev_index) ? "(currently selected)" : "");
} }
}
if (rtlsdr_open(&Modes.dev, dev_index) < 0) { if (rtlsdr_open(&Modes.dev, dev_index) < 0) {
fprintf(stderr, "Error opening the RTLSDR device: %s\n", fprintf(stderr, "Error opening the RTLSDR device: %s\n",
@ -860,9 +863,12 @@ int verbose_device_search(char *s)
} }
fprintf(stderr, "Found %d device(s):\n", device_count); fprintf(stderr, "Found %d device(s):\n", device_count);
for (i = 0; i < device_count; i++) { for (i = 0; i < device_count; i++) {
rtlsdr_get_device_usb_strings(i, vendor, product, serial); if (rtlsdr_get_device_usb_strings(i, vendor, product, serial) != 0) {
fprintf(stderr, " %d: unable to read device details\n", i);
} else {
fprintf(stderr, " %d: %s, %s, SN: %s\n", i, vendor, product, serial); fprintf(stderr, " %d: %s, %s, SN: %s\n", i, vendor, product, serial);
} }
}
fprintf(stderr, "\n"); fprintf(stderr, "\n");
/* does string look like raw id number */ /* does string look like raw id number */
device = (int)strtol(s, &s2, 0); device = (int)strtol(s, &s2, 0);
@ -1106,12 +1112,6 @@ int main(int argc, char **argv) {
if (Modes.interactive) {signal(SIGWINCH, sigWinchCallback);} if (Modes.interactive) {signal(SIGWINCH, sigWinchCallback);}
#endif #endif
if (Modes.mode_ac && Modes.oversample) {
fprintf(stderr,
"Warning: --modeac is currently ignored when --oversample is used;\n"
" no ModeA/C messages will be decoded.\n");
}
// Initialization // Initialization
log_with_timestamp("%s %s starting up.", MODES_DUMP1090_VARIANT, MODES_DUMP1090_VERSION); log_with_timestamp("%s %s starting up.", MODES_DUMP1090_VARIANT, MODES_DUMP1090_VERSION);
modesInit(); modesInit();
@ -1209,6 +1209,9 @@ int main(int argc, char **argv) {
if (Modes.oversample) { if (Modes.oversample) {
demodulate2400(buf); demodulate2400(buf);
if (Modes.mode_ac) {
demodulate2400AC(buf);
}
} else { } else {
demodulate2000(buf); demodulate2000(buf);
} }

View file

@ -75,13 +75,13 @@ int ModeAToModeC(unsigned int ModeA)
//========================================================================= //=========================================================================
// //
void decodeModeAMessage(struct modesMessage *mm, int ModeA) void decodeModeAMessage(struct modesMessage *mm, int ModeA)
{ {
mm->msgtype = 32; // Valid Mode S DF's are DF-00 to DF-31. mm->msgtype = 32; // Valid Mode S DF's are DF-00 to DF-31.
// so use 32 to indicate Mode A/C // so use 32 to indicate Mode A/C
mm->msgbits = 16; // Fudge up a Mode S style data stream mm->msgbits = 16; // Fudge up a Mode S style data stream
mm->msg[0] = (ModeA >> 8); mm->msg[0] = mm->verbatim[0] = (ModeA >> 8);
mm->msg[1] = (ModeA); mm->msg[1] = mm->verbatim[1] = (ModeA);
// Fudge an address based on Mode A (remove the Ident bit) // Fudge an address based on Mode A (remove the Ident bit)
mm->addr = (ModeA & 0x0000FF7F) | MODES_NON_ICAO_ADDRESS; mm->addr = (ModeA & 0x0000FF7F) | MODES_NON_ICAO_ADDRESS;
@ -93,10 +93,19 @@ void decodeModeAMessage(struct modesMessage *mm, int ModeA)
// Flag ident in flight status // Flag ident in flight status
mm->fs = ModeA & 0x0080; mm->fs = ModeA & 0x0080;
// Decode an altitude if this looks like a possible mode C
if (!mm->fs) {
int modeC = ModeAToModeC(ModeA);
if (modeC >= -12) {
mm->altitude = modeC * 100;
mm->bFlags |= MODES_ACFLAGS_ALTITUDE_VALID;
}
}
// Not much else we can tell from a Mode A/C reply. // Not much else we can tell from a Mode A/C reply.
// Just fudge up a few bits to keep other code happy // Just fudge up a few bits to keep other code happy
mm->correctedbits = 0; mm->correctedbits = 0;
} }
// //
// ===================== Mode A/C detection and decoding =================== // ===================== Mode A/C detection and decoding ===================
// //

View file

@ -676,12 +676,21 @@ static void send_sbs_heartbeat(struct net_service *service)
void modesQueueOutput(struct modesMessage *mm, struct aircraft *a) { void modesQueueOutput(struct modesMessage *mm, struct aircraft *a) {
int is_mlat = ((mm->bFlags & MODES_ACFLAGS_FROM_MLAT) != 0); int is_mlat = ((mm->bFlags & MODES_ACFLAGS_FROM_MLAT) != 0);
if (!is_mlat) { if (!is_mlat && mm->correctedbits < 2) {
// Don't ever forward 2-bit-corrected messages via SBS output.
// Don't ever forward mlat messages via SBS output.
modesSendSBSOutput(mm, a); modesSendSBSOutput(mm, a);
}
if (!is_mlat && (Modes.net_verbatim || mm->correctedbits < 2)) {
// Forward 2-bit-corrected messages via raw output only if --net-verbatim is set
// Don't ever forward mlat messages via raw output.
modesSendRawOutput(mm); modesSendRawOutput(mm);
} }
if (!is_mlat || Modes.forward_mlat) { if ((!is_mlat || Modes.forward_mlat) && (Modes.net_verbatim || mm->correctedbits < 2)) {
// Forward 2-bit-corrected messages via beast output only if --net-verbatim is set
// Forward mlat messages via beast output only if --forward-mlat is set
modesSendBeastOutput(mm); modesSendBeastOutput(mm);
} }
} }

View file

@ -73,13 +73,9 @@ struct aircraft *trackCreateAircraft(struct modesMessage *mm) {
// set them once here during initialisation, and don't bother to set them every // set them once here during initialisation, and don't bother to set them every
// time this ModeA/C is received again in the future // time this ModeA/C is received again in the future
if (mm->msgtype == 32) { if (mm->msgtype == 32) {
int modeC = ModeAToModeC(mm->modeA | mm->fs);
a->modeACflags = MODEAC_MSG_FLAG; a->modeACflags = MODEAC_MSG_FLAG;
if (modeC < -12) { if (!(mm->bFlags & MODES_ACFLAGS_ALTITUDE_VALID)) {
a->modeACflags |= MODEAC_MSG_MODEA_ONLY; a->modeACflags |= MODEAC_MSG_MODEA_ONLY;
} else {
mm->altitude = modeC * 100;
mm->bFlags |= MODES_ACFLAGS_ALTITUDE_VALID;
} }
} }