Rearrangements to the receive thread.

Magnitude conversion now happens immediately when sample data is
received, so there is no risk of newly received data clobbering old
data under CPU overload.
This commit is contained in:
Oliver Jowett 2015-04-09 18:51:31 +01:00
parent e6c81251bf
commit 15ea5ba3da
11 changed files with 234 additions and 160 deletions

3
debian/changelog vendored
View file

@ -7,6 +7,9 @@ dump1090-mutability (1.15~dev) UNRELEASED; urgency=medium
the usual system user UID range. (github issue #24)
* Fix timestamp correction when sample blocks are dropped. (github
issue #43)
* Rearrangements to the receive thread. Magnitude conversion now happens
immediately when sample data is received, so there is no risk of newly
received data clobbering old data under CPU overload.
-- Oliver Jowett <oliver@mutability.co.uk> Thu, 19 Feb 2015 22:39:19 +0000

View file

@ -278,12 +278,14 @@ static void applyPhaseCorrection(uint16_t *pPayload) {
// size 'mlen' bytes. Every detected Mode S message is convert it into a
// stream of bits and passed to the function to display it.
//
void demodulate2000(uint16_t *m, uint32_t mlen) {
void demodulate2000(struct mag_buf *mag) {
struct modesMessage mm;
unsigned char msg[MODES_LONG_MSG_BYTES], *pMsg;
uint16_t aux[MODES_PREAMBLE_SAMPLES+MODES_LONG_MSG_SAMPLES+1];
uint32_t j;
int use_correction = 0;
unsigned mlen = mag->length;
uint16_t *m = mag->data;
memset(&mm, 0, sizeof(mm));
@ -337,11 +339,11 @@ void demodulate2000(uint16_t *m, uint32_t mlen) {
if (ModeA) // We have found a valid ModeA/C in the data
{
mm.timestampMsg = Modes.timestampBlk + ((j+1) * 6);
mm.timestampMsg = mag->sampleTimestamp + ((j+1) * 6);
// compute message receive time as block-start-time + difference in the 12MHz clock
mm.sysTimestampMsg = Modes.stSystemTimeBlk; // end of block time
mm.sysTimestampMsg.tv_nsec -= receiveclock_ns_elapsed(mm.timestampMsg, Modes.timestampBlk + MODES_ASYNC_BUF_SAMPLES * 6); // time until end of block
mm.sysTimestampMsg = mag->sysTimestamp; // start of block time
mm.sysTimestampMsg.tv_nsec += receiveclock_ns_elapsed(mag->sampleTimestamp, mm.timestampMsg);
normalize_timespec(&mm.sysTimestampMsg);
// Decode the received message
@ -543,11 +545,11 @@ void demodulate2000(uint16_t *m, uint32_t mlen) {
int result;
// Set initial mm structure details
mm.timestampMsg = Modes.timestampBlk + (j*6);
mm.timestampMsg = mag->sampleTimestamp + (j*6);
// compute message receive time as block-start-time + difference in the 12MHz clock
mm.sysTimestampMsg = Modes.stSystemTimeBlk; // end of block time
mm.sysTimestampMsg.tv_nsec -= receiveclock_ns_elapsed(mm.timestampMsg, Modes.timestampBlk + MODES_ASYNC_BUF_SAMPLES * 6); // time until end of block
mm.sysTimestampMsg = mag->sysTimestamp; // start of block time
mm.sysTimestampMsg.tv_nsec += receiveclock_ns_elapsed(mag->sampleTimestamp, mm.timestampMsg);
normalize_timespec(&mm.sysTimestampMsg);
mm.signalLevel = (365.0*60 + sigLevel + noiseLevel) * (365.0*60 + sigLevel + noiseLevel) / MAX_POWER / 60 / 60;

View file

@ -22,6 +22,8 @@
#include <stdint.h>
void demodulate2000(uint16_t *m, uint32_t mlen);
struct mag_buf;
void demodulate2000(struct mag_buf *mag);
#endif

View file

@ -155,7 +155,7 @@ static int best_phase(uint16_t *m) {
// Given 'mlen' magnitude samples in 'm', sampled at 2.4MHz,
// try to demodulate some Mode S messages.
//
void demodulate2400(uint16_t *m, uint32_t mlen) {
void demodulate2400(struct mag_buf *mag) {
struct modesMessage mm;
unsigned char msg1[MODES_LONG_MSG_BYTES], msg2[MODES_LONG_MSG_BYTES], *msg;
uint32_t j;
@ -172,6 +172,9 @@ void demodulate2400(uint16_t *m, uint32_t mlen) {
uint64_t noise_power_sum = 0;
#endif
uint16_t *m = mag->data;
uint32_t mlen = mag->length;
memset(&mm, 0, sizeof(mm));
msg = msg1;
@ -424,11 +427,11 @@ void demodulate2400(uint16_t *m, uint32_t mlen) {
msglen = modesMessageLenByType(bestmsg[0] >> 3);
// Set initial mm structure details
mm.timestampMsg = Modes.timestampBlk + (j*5) + bestphase;
mm.timestampMsg = mag->sampleTimestamp + (j*5) + bestphase;
// compute message receive time as block-start-time + difference in the 12MHz clock
mm.sysTimestampMsg = Modes.stSystemTimeBlk; // end of block time
mm.sysTimestampMsg.tv_nsec -= receiveclock_ns_elapsed(mm.timestampMsg, Modes.timestampBlk + MODES_ASYNC_BUF_SAMPLES * 5); // time until end of block
mm.sysTimestampMsg = mag->sysTimestamp; // start of block time
mm.sysTimestampMsg.tv_nsec += receiveclock_ns_elapsed(mag->sampleTimestamp, mm.timestampMsg);
normalize_timespec(&mm.sysTimestampMsg);
mm.score = bestscore;

View file

@ -22,6 +22,8 @@
#include <stdint.h>
void demodulate2400(uint16_t *m, uint32_t mlen);
struct mag_buf;
void demodulate2400(struct mag_buf *mag);
#endif

View file

@ -167,17 +167,23 @@ void modesInit(void) {
// Allocate the various buffers used by Modes
Modes.trailing_samples = (Modes.oversample ? (MODES_OS_PREAMBLE_SAMPLES + MODES_OS_LONG_MSG_SAMPLES) : (MODES_PREAMBLE_SAMPLES + MODES_LONG_MSG_SAMPLES)) + 16;
if ( ((Modes.pFileData = (uint16_t *) malloc(MODES_ASYNC_BUF_SIZE) ) == NULL) ||
((Modes.magnitude = (uint16_t *) calloc(MODES_ASYNC_BUF_SAMPLES+Modes.trailing_samples, 2) ) == NULL) ||
((Modes.maglut = (uint16_t *) malloc(sizeof(uint16_t) * 256 * 256) ) == NULL) ||
if ( ((Modes.maglut = (uint16_t *) malloc(sizeof(uint16_t) * 256 * 256) ) == NULL) ||
((Modes.log10lut = (uint16_t *) malloc(sizeof(uint16_t) * 256 * 256) ) == NULL) )
{
fprintf(stderr, "Out of memory allocating data buffer.\n");
exit(1);
}
// Clear the buffers that have just been allocated, just in-case
memset(Modes.pFileData,127, MODES_ASYNC_BUF_SIZE);
for (i = 0; i < MODES_MAG_BUFFERS; ++i) {
if ( (Modes.mag_buffers[i].data = calloc(MODES_MAG_BUF_SAMPLES+Modes.trailing_samples, sizeof(uint16_t))) == NULL ) {
fprintf(stderr, "Out of memory allocating magnitude buffer.\n");
exit(1);
}
Modes.mag_buffers[i].length = 0;
Modes.mag_buffers[i].dropped = 0;
Modes.mag_buffers[i].sampleTimestamp = 0;
}
// Validate the users Lat/Lon home location inputs
if ( (Modes.fUserLat > 90.0) // Latitude must be -90 to +90
@ -206,11 +212,6 @@ void modesInit(void) {
if (Modes.net_sndbuf_size > (MODES_NET_SNDBUF_MAX))
{Modes.net_sndbuf_size = MODES_NET_SNDBUF_MAX;}
// Initialise the Block Timers to something half sensible
clock_gettime(CLOCK_REALTIME, &Modes.stSystemTimeBlk);
for (i = 0; i < MODES_ASYNC_BUF_NUMBER; i++)
{Modes.stSystemTimeRTL[i] = Modes.stSystemTimeBlk;}
// Each I and Q value varies from 0 to 255, which represents a range from -1 to +1. To get from the
// unsigned (0-255) range you therefore subtract 127 (or 128 or 127.5) from each I and Q, giving you
// a range from -127 to +128 (or -128 to +127, or -127.5 to +127.5)..
@ -382,43 +383,105 @@ int modesInitRTLSDR(void) {
static struct timespec reader_thread_start;
void rtlsdrCallback(unsigned char *buf, uint32_t len, void *ctx) {
struct mag_buf *outbuf;
struct mag_buf *lastbuf;
uint16_t *p, *q;
uint32_t slen;
unsigned next_free_buffer;
unsigned free_bufs;
unsigned block_duration;
static int was_odd = 0; // paranoia!!
static int dropping = 0;
MODES_NOTUSED(ctx);
// Lock the data buffer variables before accessing them
pthread_mutex_lock(&Modes.data_mutex);
if (Modes.exit) {
rtlsdr_cancel_async(Modes.dev); // ask our caller to exit
}
Modes.iDataIn &= (MODES_ASYNC_BUF_NUMBER-1); // Just incase!!!
next_free_buffer = (Modes.first_free_buffer + 1) % MODES_MAG_BUFFERS;
outbuf = &Modes.mag_buffers[Modes.first_free_buffer];
lastbuf = &Modes.mag_buffers[(Modes.first_free_buffer + MODES_MAG_BUFFERS - 1) % MODES_MAG_BUFFERS];
free_bufs = (Modes.first_filled_buffer - next_free_buffer + MODES_MAG_BUFFERS) % MODES_MAG_BUFFERS;
// Get the system time for this block
clock_gettime(CLOCK_REALTIME, &Modes.stSystemTimeRTL[Modes.iDataIn]);
// Paranoia! Unlikely, but let's go for belt and suspenders here
if (len > MODES_ASYNC_BUF_SIZE) {len = MODES_ASYNC_BUF_SIZE;}
if (len != MODES_RTL_BUF_SIZE) {
fprintf(stderr, "weirdness: rtlsdr gave us a block with an unusual size (got %u bytes, expected %u bytes)\n",
(unsigned)len, (unsigned)MODES_RTL_BUF_SIZE);
// Queue the new data
Modes.pData[Modes.iDataIn] = (uint16_t *) buf;
Modes.iDataIn = (MODES_ASYNC_BUF_NUMBER-1) & (Modes.iDataIn + 1);
Modes.iDataReady = (MODES_ASYNC_BUF_NUMBER-1) & (Modes.iDataIn - Modes.iDataOut);
if (Modes.iDataReady == 0) {
// Ooooops. We've just received the MODES_ASYNC_BUF_NUMBER'th outstanding buffer
// This means that RTLSDR is currently overwriting the MODES_ASYNC_BUF_NUMBER+1
// buffer, but we havent yet processed it, so we're going to lose it. There
// isn't much we can do to recover the lost data, but we can correct things to
// avoid any additional problems.
Modes.iDataOut = (MODES_ASYNC_BUF_NUMBER-1) & (Modes.iDataOut+1);
Modes.iDataReady = (MODES_ASYNC_BUF_NUMBER-1);
Modes.iDataLost++;
if (len > MODES_RTL_BUF_SIZE) {
// wat?! Discard the start.
unsigned discard = (len - MODES_RTL_BUF_SIZE + 1) / 2;
outbuf->dropped += discard;
buf += discard*2;
len -= discard*2;
}
}
if (was_odd) {
// Drop a sample so we are in sync with I/Q samples again (hopefully)
++buf;
--len;
++outbuf->dropped;
}
was_odd = (len & 1);
slen = len/2;
if (free_bufs == 0 || (dropping && free_bufs < MODES_MAG_BUFFERS/2)) {
// FIFO is full. Drop this block.
dropping = 1;
outbuf->dropped += slen;
pthread_mutex_unlock(&Modes.data_mutex);
return;
}
dropping = 0;
pthread_mutex_unlock(&Modes.data_mutex);
// Compute the sample timestamp and system timestamp for the start of the block
if (Modes.oversample) {
outbuf->sampleTimestamp = lastbuf->sampleTimestamp + (lastbuf->length + outbuf->dropped) * 5;
block_duration = slen * 5000U / 12;
} else {
outbuf->sampleTimestamp = lastbuf->sampleTimestamp + (lastbuf->length + outbuf->dropped) * 6;
block_duration = slen * 6000U / 12;
}
// Get the approx system time for the start of this block
clock_gettime(CLOCK_REALTIME, &outbuf->sysTimestamp);
outbuf->sysTimestamp.tv_nsec -= block_duration;
normalize_timespec(&outbuf->sysTimestamp);
// Copy trailing data from last block (or reset if not valid)
if (outbuf->dropped == 0 && lastbuf->length >= Modes.trailing_samples) {
memcpy(outbuf->data, lastbuf->data + lastbuf->length - Modes.trailing_samples, Modes.trailing_samples * sizeof(uint16_t));
} else {
memset(outbuf->data, 127, Modes.trailing_samples * sizeof(uint16_t));
}
// Convert the new data
outbuf->length = slen;
p = (uint16_t*)buf;
q = &outbuf->data[Modes.trailing_samples];
while (slen-- > 0)
*q++ = Modes.maglut[*p++];
// Push the new data to the demodulation thread
pthread_mutex_lock(&Modes.data_mutex);
Modes.mag_buffers[next_free_buffer].dropped = 0;
Modes.mag_buffers[next_free_buffer].length = 0; // just in case
Modes.first_free_buffer = next_free_buffer;
// accumulate CPU while holding the mutex, and restart measurement
end_cpu_timing(&reader_thread_start, &Modes.reader_cpu_accumulator);
start_cpu_timing(&reader_thread_start);
// Signal to the other thread that new data is ready, and unlock
pthread_cond_signal(&Modes.data_cond);
pthread_mutex_unlock(&Modes.data_mutex);
}
@ -429,60 +492,93 @@ void rtlsdrCallback(unsigned char *buf, uint32_t len, void *ctx) {
// instead of using an RTLSDR device
//
void readDataFromFile(void) {
pthread_mutex_lock(&Modes.data_mutex);
while(Modes.exit == 0) {
ssize_t nread, toread;
unsigned char *p;
int eof = 0;
struct timespec next_buffer_delivery;
if (Modes.iDataReady) {
clock_gettime(CLOCK_MONOTONIC, &next_buffer_delivery);
pthread_mutex_lock(&Modes.data_mutex);
while (!Modes.exit && !eof) {
ssize_t nread, toread;
void *r;
uint16_t *p;
struct mag_buf *outbuf, *lastbuf;
unsigned next_free_buffer;
unsigned slen;
next_free_buffer = (Modes.first_free_buffer + 1) % MODES_MAG_BUFFERS;
if (next_free_buffer == Modes.first_filled_buffer) {
// no space for output yet
pthread_cond_wait(&Modes.data_cond, &Modes.data_mutex);
continue;
}
if (Modes.interactive) {
// When --ifile and --interactive are used together, slow down
// playing at the natural rate of the RTLSDR received.
outbuf = &Modes.mag_buffers[Modes.first_free_buffer];
lastbuf = &Modes.mag_buffers[(Modes.first_free_buffer + MODES_MAG_BUFFERS - 1) % MODES_MAG_BUFFERS];
pthread_mutex_unlock(&Modes.data_mutex);
usleep(64000);
pthread_mutex_lock(&Modes.data_mutex);
// Compute the sample timestamp and system timestamp for the start of the block
if (Modes.oversample) {
outbuf->sampleTimestamp = lastbuf->sampleTimestamp + lastbuf->length * 5;
} else {
outbuf->sampleTimestamp = lastbuf->sampleTimestamp + lastbuf->length * 6;
}
toread = MODES_ASYNC_BUF_SIZE;
p = (unsigned char *) Modes.pFileData;
// Copy trailing data from last block (or reset if not valid)
if (lastbuf->length >= Modes.trailing_samples) {
memcpy(outbuf->data, lastbuf->data + lastbuf->length - Modes.trailing_samples, Modes.trailing_samples * sizeof(uint16_t));
} else {
memset(outbuf->data, 127, Modes.trailing_samples * sizeof(uint16_t));
}
// Get the system time for the start of this block
clock_gettime(CLOCK_REALTIME, &outbuf->sysTimestamp);
toread = MODES_RTL_BUF_SIZE;
r = (void *) (outbuf->data + Modes.trailing_samples);
while(toread) {
nread = read(Modes.fd, p, toread);
nread = read(Modes.fd, r, toread);
if (nread <= 0) {
// Done.
Modes.exit = 1; // Signal the other threads to exit.
goto OUT;
eof = 1;
break;
}
p += nread;
r += nread;
toread -= nread;
}
if (toread) {
// Not enough data on file to fill the buffer? Pad with no signal.
memset(p,127,toread);
slen = outbuf->length = (MODES_RTL_BUF_SIZE - toread) / 2;
// Convert the new data
p = (uint16_t*) (outbuf->data + Modes.trailing_samples);
while (slen-- > 0) {
*p = Modes.maglut[*p];
++p;
}
Modes.iDataIn &= (MODES_ASYNC_BUF_NUMBER-1); // Just incase!!!
if (Modes.interactive) {
// Wait until we are allowed to release this buffer to the main thread
while (clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &next_buffer_delivery, NULL) == EINTR)
;
// Get the system time for this block
clock_gettime(CLOCK_REALTIME, &Modes.stSystemTimeRTL[Modes.iDataIn]);
// Queue the new data
Modes.pData[Modes.iDataIn] = Modes.pFileData;
Modes.iDataIn = (MODES_ASYNC_BUF_NUMBER-1) & (Modes.iDataIn + 1);
Modes.iDataReady = (MODES_ASYNC_BUF_NUMBER-1) & (Modes.iDataIn - Modes.iDataOut);
// compute the time we can deliver the next buffer.
next_buffer_delivery.tv_nsec += (slen * (Modes.oversample ? 5000 : 6000) / 12);
normalize_timespec(&next_buffer_delivery);
}
// Push the new data to the main thread
pthread_mutex_lock(&Modes.data_mutex);
Modes.first_free_buffer = next_free_buffer;
// accumulate CPU while holding the mutex, and restart measurement
end_cpu_timing(&reader_thread_start, &Modes.reader_cpu_accumulator);
start_cpu_timing(&reader_thread_start);
// Signal to the other thread that new data is ready
pthread_cond_signal(&Modes.data_cond);
}
OUT:
// Wait for the main thread to consume all data
while (!Modes.exit && Modes.first_filled_buffer != Modes.first_free_buffer)
pthread_cond_wait(&Modes.data_cond, &Modes.data_mutex);
pthread_mutex_unlock(&Modes.data_mutex);
}
//
@ -500,8 +596,8 @@ void *readerThreadEntryPoint(void *arg) {
if (Modes.filename == NULL) {
while (!Modes.exit) {
rtlsdr_read_async(Modes.dev, rtlsdrCallback, NULL,
MODES_ASYNC_BUF_NUMBER,
MODES_ASYNC_BUF_SIZE);
MODES_RTL_BUFFERS,
MODES_RTL_BUF_SIZE);
if (!Modes.exit) {
log_with_timestamp("Warning: lost the connection to the RTLSDR device.");
@ -1027,7 +1123,7 @@ int main(int argc, char **argv) {
while (Modes.exit == 0) {
struct timespec start_time;
if (Modes.iDataReady == 0) {
if (Modes.first_free_buffer == Modes.first_filled_buffer) {
/* wait for more data.
* we should be getting data every 50-60ms. wait for max 100ms before we give up and do some background work.
* this is fairly aggressive as all our network I/O runs out of the background work!
@ -1039,63 +1135,44 @@ int main(int argc, char **argv) {
normalize_timespec(&ts);
pthread_cond_timedwait(&Modes.data_cond, &Modes.data_mutex, &ts); // This unlocks Modes.data_mutex, and waits for Modes.data_cond
// Once (Modes.data_cond) occurs, it locks Modes.data_mutex
}
// Modes.data_mutex is Locked, and possibly (Modes.iDataReady != 0)
// Modes.data_mutex is locked, and possibly we have data.
// copy out reader CPU time and reset it
add_timespecs(&Modes.reader_cpu_accumulator, &Modes.stats_current.reader_cpu, &Modes.stats_current.reader_cpu);
Modes.reader_cpu_accumulator.tv_sec = 0;
Modes.reader_cpu_accumulator.tv_nsec = 0;
if (Modes.iDataReady) { // Check we have new data, just in case!!
if (Modes.first_free_buffer != Modes.first_filled_buffer) {
// FIFO is not empty, process one buffer.
struct mag_buf *buf;
start_cpu_timing(&start_time);
Modes.iDataOut &= (MODES_ASYNC_BUF_NUMBER-1); // Just incase
// Translate the next lot of I/Q samples into Modes.magnitude
computeMagnitudeVector(Modes.pData[Modes.iDataOut]);
Modes.stSystemTimeBlk = Modes.stSystemTimeRTL[Modes.iDataOut];
// Update the input buffer pointer queue
Modes.iDataOut = (MODES_ASYNC_BUF_NUMBER-1) & (Modes.iDataOut + 1);
Modes.iDataReady = (MODES_ASYNC_BUF_NUMBER-1) & (Modes.iDataIn - Modes.iDataOut);
// If we lost some blocks, correct the timestamp
if (Modes.iDataLost) {
if (Modes.oversample)
Modes.timestampBlk += (MODES_ASYNC_BUF_SAMPLES * 5 * Modes.iDataLost);
else
Modes.timestampBlk += (MODES_ASYNC_BUF_SAMPLES * 6 * Modes.iDataLost);
Modes.stats_current.blocks_dropped += Modes.iDataLost;
Modes.iDataLost = 0;
}
// It's safe to release the lock now
pthread_cond_signal (&Modes.data_cond);
pthread_mutex_unlock(&Modes.data_mutex);
buf = &Modes.mag_buffers[Modes.first_filled_buffer];
// Process data after releasing the lock, so that the capturing
// thread can read data while we perform computationally expensive
// stuff at the same time.
pthread_mutex_unlock(&Modes.data_mutex);
if (Modes.oversample)
demodulate2400(Modes.magnitude, MODES_ASYNC_BUF_SAMPLES);
demodulate2400(buf);
else
demodulate2000(Modes.magnitude, MODES_ASYNC_BUF_SAMPLES);
// Update the timestamp ready for the next block
if (Modes.oversample)
Modes.timestampBlk += (MODES_ASYNC_BUF_SAMPLES*5);
else
Modes.timestampBlk += (MODES_ASYNC_BUF_SAMPLES*6);
Modes.stats_current.blocks_processed++;
demodulate2000(buf);
Modes.stats_current.samples_processed += buf->length;
Modes.stats_current.samples_dropped += buf->dropped;
end_cpu_timing(&start_time, &Modes.stats_current.demod_cpu);
// Mark the buffer we just processed as completed.
pthread_mutex_lock(&Modes.data_mutex);
Modes.first_filled_buffer = (Modes.first_filled_buffer + 1) % MODES_MAG_BUFFERS;
pthread_cond_signal(&Modes.data_cond);
pthread_mutex_unlock(&Modes.data_mutex);
} else {
pthread_cond_signal (&Modes.data_cond);
// Nothing to process this time around.
pthread_mutex_unlock(&Modes.data_mutex);
}

View file

@ -92,9 +92,10 @@
#define MODES_DEFAULT_FREQ 1090000000
#define MODES_DEFAULT_WIDTH 1000
#define MODES_DEFAULT_HEIGHT 700
#define MODES_ASYNC_BUF_NUMBER 16
#define MODES_ASYNC_BUF_SIZE (16*16384) // 256k
#define MODES_ASYNC_BUF_SAMPLES (MODES_ASYNC_BUF_SIZE / 2) // Each sample is 2 bytes
#define MODES_RTL_BUFFERS 15 // Number of RTL buffers
#define MODES_RTL_BUF_SIZE (16*16384) // 256k
#define MODES_MAG_BUF_SAMPLES (MODES_RTL_BUF_SIZE / 2) // Each sample is 2 bytes
#define MODES_MAG_BUFFERS 12 // Number of magnitude buffers (should be smaller than RTL_BUFFERS for flowcontrol to work)
#define MODES_AUTO_GAIN -100 // Use automatic gain
#define MODES_MAX_GAIN 999999 // Use max available gain
#define MODES_MSG_SQUELCH_DB 4.0 // Minimum SNR, in dB
@ -240,26 +241,29 @@ struct net_writer {
uint64_t lastWrite; // time of last write to clients
};
// Structure representing one magnitude buffer
struct mag_buf {
uint16_t *data; // Magnitude data. Starts with Modes.trailing_samples worth of overlap from the previous block
unsigned length; // Number of valid samples _after_ overlap. Total buffer length is buf->length + Modes.trailing_samples.
uint64_t sampleTimestamp; // Clock timestamp of the start of this block, 12MHz clock
struct timespec sysTimestamp; // Estimated system time at start of block
uint32_t dropped; // Number of dropped samples preceding this buffer
};
// Program global state
struct { // Internal state
pthread_t reader_thread;
pthread_mutex_t data_mutex; // Mutex to synchronize buffer access
pthread_cond_t data_cond; // Conditional variable associated
uint16_t *pData [MODES_ASYNC_BUF_NUMBER]; // Raw IQ sample buffers from RTL
struct timespec stSystemTimeRTL[MODES_ASYNC_BUF_NUMBER]; // System time when RTL passed us this block
int iDataIn; // Fifo input pointer
int iDataOut; // Fifo output pointer
int iDataReady; // Fifo content count
int iDataLost; // Count of missed buffers
struct mag_buf mag_buffers[MODES_MAG_BUFFERS]; // Converted magnitude buffers from RTL or file input
unsigned first_free_buffer; // Entry in mag_buffers that will next be filled with input.
unsigned first_filled_buffer; // Entry in mag_buffers that has valid data and will be demodulated next. If equal to next_free_buffer, there is no unprocessed data.
struct timespec reader_cpu_accumulator; // CPU time used by the reader thread, copied out and reset by the main thread under the mutex
int trailing_samples;// extra trailing samples in magnitude buffer
unsigned trailing_samples; // extra trailing samples in magnitude buffers
uint16_t *pFileData; // Raw IQ samples buffer (from a File)
uint16_t *magnitude; // Magnitude vector
uint64_t timestampBlk; // Timestamp of the start of the current block
struct timespec stSystemTimeBlk; // System time when RTL passed us currently processing this block
int fd; // --ifile option file descriptor
uint16_t *maglut; // I/Q -> Magnitude lookup table
uint16_t *log10lut; // Magnitude -> log10 lookup table
@ -429,7 +433,6 @@ int scoreModesMessage(unsigned char *msg, int validbits);
int decodeModesMessage (struct modesMessage *mm, unsigned char *msg);
void displayModesMessage(struct modesMessage *mm);
void useModesMessage (struct modesMessage *mm);
void computeMagnitudeVector(uint16_t *pData);
//
// Functions exported from interactive.c
//

View file

@ -1193,24 +1193,6 @@ void displayModesMessage(struct modesMessage *mm) {
printf("\n");
}
//
//=========================================================================
//
// Turn I/Q samples pointed by Modes.data into the magnitude vector
// pointed by Modes.magnitude.
//
void computeMagnitudeVector(uint16_t *p) {
uint16_t *m = &Modes.magnitude[Modes.trailing_samples];
uint32_t j;
memcpy(Modes.magnitude,&Modes.magnitude[MODES_ASYNC_BUF_SAMPLES], Modes.trailing_samples * 2);
// Compute the magnitudo vector. It's just SQRT(I^2 + Q^2), but
// we rescale to the 0-255 range to exploit the full resolution.
for (j = 0; j < MODES_ASYNC_BUF_SAMPLES; j ++) {
*m++ = Modes.maglut[*p++];
}
}
//
//=========================================================================

View file

@ -825,14 +825,14 @@ static char * appendStatsJson(char *p,
if (!Modes.net_only) {
p += snprintf(p, end-p,
",\"local\":{\"blocks_processed\":%u"
",\"blocks_dropped\":%u"
",\"local\":{\"samples_processed\":%llu"
",\"samples_dropped\":%llu"
",\"modeac\":%u"
",\"modes\":%u"
",\"bad\":%u"
",\"unknown_icao\":%u",
st->blocks_processed,
st->blocks_dropped,
(unsigned long long)st->samples_processed,
(unsigned long long)st->samples_dropped,
st->demod_modeac,
st->demod_preambles,
st->demod_rejected_bad,

View file

@ -78,8 +78,8 @@ void display_stats(struct stats *st) {
if (!Modes.net_only) {
printf("Local receiver:\n");
printf(" %u sample blocks processed\n", st->blocks_processed);
printf(" %u sample blocks dropped\n", st->blocks_dropped);
printf(" %llu samples processed\n", (unsigned long long)st->samples_processed);
printf(" %llu samples dropped\n", (unsigned long long)st->samples_dropped);
printf(" %u Mode A/C messages received\n", st->demod_modeac);
printf(" %u Mode-S message preambles received\n", st->demod_preambles);
@ -202,8 +202,8 @@ void add_stats(const struct stats *st1, const struct stats *st2, struct stats *t
target->demod_accepted[i] = st1->demod_accepted[i] + st2->demod_accepted[i];
target->demod_modeac = st1->demod_modeac + st2->demod_modeac;
target->blocks_processed = st1->blocks_processed + st2->blocks_processed;
target->blocks_dropped = st1->blocks_dropped + st2->blocks_dropped;
target->samples_processed = st1->samples_processed + st2->samples_processed;
target->samples_dropped = st1->samples_dropped + st2->samples_dropped;
add_timespecs(&st1->demod_cpu, &st2->demod_cpu, &target->demod_cpu);
add_timespecs(&st1->reader_cpu, &st2->reader_cpu, &target->reader_cpu);

View file

@ -63,8 +63,8 @@ struct stats {
// Mode A/C demodulator counts:
uint32_t demod_modeac;
uint32_t blocks_processed;
uint32_t blocks_dropped;
uint64_t samples_processed;
uint64_t samples_dropped;
// timing:
struct timespec demod_cpu;