2015-01-20 17:49:01 +01:00
|
|
|
// Part of dump1090, a Mode S message decoder for RTLSDR devices.
|
2015-01-20 00:50:25 +01:00
|
|
|
//
|
2015-01-20 17:49:01 +01:00
|
|
|
// demod_2400.c: 2.4MHz Mode S demodulator.
|
2015-01-20 00:50:25 +01:00
|
|
|
//
|
2015-01-20 17:49:01 +01:00
|
|
|
// Copyright (c) 2014,2015 Oliver Jowett <oliver@mutability.co.uk>
|
2015-01-20 00:50:25 +01:00
|
|
|
//
|
2015-01-20 17:49:01 +01:00
|
|
|
// This file is free software: you may copy, redistribute and/or modify it
|
|
|
|
// under the terms of the GNU General Public License as published by the
|
|
|
|
// Free Software Foundation, either version 2 of the License, or (at your
|
|
|
|
// option) any later version.
|
2015-01-20 00:50:25 +01:00
|
|
|
//
|
2015-01-20 17:49:01 +01:00
|
|
|
// This file is distributed in the hope that it will be useful, but
|
|
|
|
// WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
// General Public License for more details.
|
2015-01-20 00:50:25 +01:00
|
|
|
//
|
2015-01-20 17:49:01 +01:00
|
|
|
// You should have received a copy of the GNU General Public License
|
|
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
2015-01-20 00:50:25 +01:00
|
|
|
|
|
|
|
#include "dump1090.h"
|
|
|
|
|
2015-01-23 00:38:21 +01:00
|
|
|
//
|
|
|
|
// Measuring the noise power is actually surprisingly expensive on an ARM -
|
|
|
|
// it increases the CPU use of the demodulator by 1/3. So it's off by default.
|
|
|
|
// You can turn it back on here:
|
|
|
|
#undef MEASURE_NOISE
|
|
|
|
|
2015-01-20 00:50:25 +01:00
|
|
|
// 2.4MHz sampling rate version
|
|
|
|
//
|
|
|
|
// When sampling at 2.4MHz we have exactly 6 samples per 5 symbols.
|
|
|
|
// Each symbol is 500ns wide, each sample is 416.7ns wide
|
|
|
|
//
|
|
|
|
// We maintain a phase offset that is expressed in units of 1/5 of a sample i.e. 1/6 of a symbol, 83.333ns
|
|
|
|
// Each symbol we process advances the phase offset by 6 i.e. 6/5 of a sample, 500ns
|
|
|
|
//
|
|
|
|
// The correlation functions below correlate a 1-0 pair of symbols (i.e. manchester encoded 1 bit)
|
|
|
|
// starting at the given sample, and assuming that the symbol starts at a fixed 0-5 phase offset within
|
|
|
|
// m[0]. They return a correlation value, generally interpreted as >0 = 1 bit, <0 = 0 bit
|
|
|
|
|
|
|
|
// TODO check if there are better (or more balanced) correlation functions to use here
|
|
|
|
|
|
|
|
// nb: the correlation functions sum to zero, so we do not need to adjust for the DC offset in the input signal
|
|
|
|
// (adding any constant value to all of m[0..3] does not change the result)
|
|
|
|
|
|
|
|
static inline int slice_phase0(uint16_t *m) {
|
|
|
|
return 5 * m[0] - 3 * m[1] - 2 * m[2];
|
|
|
|
}
|
|
|
|
static inline int slice_phase1(uint16_t *m) {
|
|
|
|
return 4 * m[0] - m[1] - 3 * m[2];
|
|
|
|
}
|
|
|
|
static inline int slice_phase2(uint16_t *m) {
|
|
|
|
return 3 * m[0] + m[1] - 4 * m[2];
|
|
|
|
}
|
|
|
|
static inline int slice_phase3(uint16_t *m) {
|
|
|
|
return 2 * m[0] + 3 * m[1] - 5 * m[2];
|
|
|
|
}
|
|
|
|
static inline int slice_phase4(uint16_t *m) {
|
|
|
|
return m[0] + 5 * m[1] - 5 * m[2] - m[3];
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int correlate_phase0(uint16_t *m) {
|
|
|
|
return slice_phase0(m) * 26;
|
|
|
|
}
|
|
|
|
static inline int correlate_phase1(uint16_t *m) {
|
|
|
|
return slice_phase1(m) * 38;
|
|
|
|
}
|
|
|
|
static inline int correlate_phase2(uint16_t *m) {
|
|
|
|
return slice_phase2(m) * 38;
|
|
|
|
}
|
|
|
|
static inline int correlate_phase3(uint16_t *m) {
|
|
|
|
return slice_phase3(m) * 26;
|
|
|
|
}
|
|
|
|
static inline int correlate_phase4(uint16_t *m) {
|
|
|
|
return slice_phase4(m) * 19;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// These functions work out the correlation quality for the 10 symbols (5 bits) starting at m[0] + given phase offset.
|
|
|
|
// This is used to find the right phase offset to use for decoding.
|
|
|
|
//
|
|
|
|
|
|
|
|
static inline int correlate_check_0(uint16_t *m) {
|
|
|
|
return
|
|
|
|
abs(correlate_phase0(&m[0])) +
|
|
|
|
abs(correlate_phase2(&m[2])) +
|
|
|
|
abs(correlate_phase4(&m[4])) +
|
|
|
|
abs(correlate_phase1(&m[7])) +
|
|
|
|
abs(correlate_phase3(&m[9]));
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int correlate_check_1(uint16_t *m) {
|
|
|
|
return
|
|
|
|
abs(correlate_phase1(&m[0])) +
|
|
|
|
abs(correlate_phase3(&m[2])) +
|
|
|
|
abs(correlate_phase0(&m[5])) +
|
|
|
|
abs(correlate_phase2(&m[7])) +
|
|
|
|
abs(correlate_phase4(&m[9]));
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int correlate_check_2(uint16_t *m) {
|
|
|
|
return
|
|
|
|
abs(correlate_phase2(&m[0])) +
|
|
|
|
abs(correlate_phase4(&m[2])) +
|
|
|
|
abs(correlate_phase1(&m[5])) +
|
|
|
|
abs(correlate_phase3(&m[7])) +
|
|
|
|
abs(correlate_phase0(&m[10]));
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int correlate_check_3(uint16_t *m) {
|
|
|
|
return
|
|
|
|
abs(correlate_phase3(&m[0])) +
|
|
|
|
abs(correlate_phase0(&m[3])) +
|
|
|
|
abs(correlate_phase2(&m[5])) +
|
|
|
|
abs(correlate_phase4(&m[7])) +
|
|
|
|
abs(correlate_phase1(&m[10]));
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int correlate_check_4(uint16_t *m) {
|
|
|
|
return
|
|
|
|
abs(correlate_phase4(&m[0])) +
|
|
|
|
abs(correlate_phase1(&m[3])) +
|
|
|
|
abs(correlate_phase3(&m[5])) +
|
|
|
|
abs(correlate_phase0(&m[8])) +
|
|
|
|
abs(correlate_phase2(&m[10]));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Work out the best phase offset to use for the given message.
|
|
|
|
static int best_phase(uint16_t *m) {
|
|
|
|
int test;
|
|
|
|
int best = -1;
|
|
|
|
int bestval = (m[0] + m[1] + m[2] + m[3] + m[4] + m[5]); // minimum correlation quality we will accept
|
|
|
|
|
|
|
|
// empirical testing suggests that 4..8 is the best range to test for here
|
|
|
|
// (testing a wider range runs the danger of picking the wrong phase for
|
|
|
|
// a message that would otherwise be successfully decoded - the correlation
|
|
|
|
// functions can match well with a one symbol / half bit offset)
|
|
|
|
|
|
|
|
// this is consistent with the peak detection which should produce
|
|
|
|
// the first data symbol with phase offset 4..8
|
|
|
|
|
|
|
|
test = correlate_check_4(&m[0]);
|
|
|
|
if (test > bestval) { bestval = test; best = 4; }
|
|
|
|
test = correlate_check_0(&m[1]);
|
|
|
|
if (test > bestval) { bestval = test; best = 5; }
|
|
|
|
test = correlate_check_1(&m[1]);
|
|
|
|
if (test > bestval) { bestval = test; best = 6; }
|
|
|
|
test = correlate_check_2(&m[1]);
|
|
|
|
if (test > bestval) { bestval = test; best = 7; }
|
|
|
|
test = correlate_check_3(&m[1]);
|
|
|
|
if (test > bestval) { bestval = test; best = 8; }
|
|
|
|
return best;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
2015-01-21 14:32:17 +01:00
|
|
|
// Given 'mlen' magnitude samples in 'm', sampled at 2.4MHz,
|
|
|
|
// try to demodulate some Mode S messages.
|
2015-01-20 00:50:25 +01:00
|
|
|
//
|
2015-01-21 14:32:17 +01:00
|
|
|
void demodulate2400(uint16_t *m, uint32_t mlen) {
|
2015-01-20 00:50:25 +01:00
|
|
|
struct modesMessage mm;
|
2015-01-21 14:32:17 +01:00
|
|
|
unsigned char msg1[MODES_LONG_MSG_BYTES], msg2[MODES_LONG_MSG_BYTES], *msg;
|
2015-01-20 00:50:25 +01:00
|
|
|
uint32_t j;
|
2015-01-23 00:38:21 +01:00
|
|
|
#ifdef MEASURE_NOISE
|
2015-01-22 02:01:39 +01:00
|
|
|
uint32_t last_message_end = 0;
|
2015-01-23 00:38:21 +01:00
|
|
|
#endif
|
2015-01-20 00:50:25 +01:00
|
|
|
|
2015-01-21 14:32:17 +01:00
|
|
|
unsigned char *bestmsg;
|
2015-01-21 20:10:07 +01:00
|
|
|
int bestscore, bestphase;
|
2015-01-21 14:32:17 +01:00
|
|
|
|
2015-01-23 00:38:21 +01:00
|
|
|
#ifdef MEASURE_NOISE
|
2015-01-22 02:01:39 +01:00
|
|
|
// noise floor:
|
|
|
|
uint32_t noise_power_count = 0;
|
|
|
|
uint64_t noise_power_sum = 0;
|
2015-01-23 00:38:21 +01:00
|
|
|
#endif
|
2015-01-22 02:01:39 +01:00
|
|
|
|
2015-01-20 00:50:25 +01:00
|
|
|
memset(&mm, 0, sizeof(mm));
|
2015-01-21 14:32:17 +01:00
|
|
|
msg = msg1;
|
2015-01-20 00:50:25 +01:00
|
|
|
|
|
|
|
for (j = 0; j < mlen; j++) {
|
|
|
|
uint16_t *preamble = &m[j];
|
2015-01-21 14:32:17 +01:00
|
|
|
int high;
|
|
|
|
uint32_t base_signal, base_noise;
|
|
|
|
int initial_phase, first_phase, last_phase, try_phase;
|
|
|
|
int msglen;
|
2015-01-20 00:50:25 +01:00
|
|
|
|
2015-01-23 00:38:21 +01:00
|
|
|
#ifdef MEASURE_NOISE
|
2015-01-22 02:01:39 +01:00
|
|
|
// update noise for all samples that aren't part of a message
|
|
|
|
// (we don't know if m[j] is or not, yet, so work one sample
|
|
|
|
// in arrears)
|
|
|
|
if (j > last_message_end+1) {
|
|
|
|
// There seems to be a weird compiler bug I'm hitting here..
|
|
|
|
// if you compute the square directly, it occasionally gets mangled.
|
|
|
|
uint64_t s = TRUE_AMPLITUDE(m[j-1]);
|
|
|
|
noise_power_sum += s * s;
|
|
|
|
noise_power_count++;
|
|
|
|
}
|
2015-01-23 00:38:21 +01:00
|
|
|
#endif
|
2015-01-22 02:01:39 +01:00
|
|
|
|
2015-01-20 00:50:25 +01:00
|
|
|
// Look for a message starting at around sample 0 with phase offset 3..7
|
|
|
|
|
|
|
|
// Ideal sample values for preambles with different phase
|
|
|
|
// Xn is the first data symbol with phase offset N
|
|
|
|
//
|
|
|
|
// sample#: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
|
|
|
|
// phase 3: 2/4\0/5\1 0 0 0 0/5\1/3 3\0 0 0 0 0 0 X4
|
|
|
|
// phase 4: 1/5\0/4\2 0 0 0 0/4\2 2/4\0 0 0 0 0 0 0 X0
|
|
|
|
// phase 5: 0/5\1/3 3\0 0 0 0/3 3\1/5\0 0 0 0 0 0 0 X1
|
|
|
|
// phase 6: 0/4\2 2/4\0 0 0 0 2/4\0/5\1 0 0 0 0 0 0 X2
|
|
|
|
// phase 7: 0/3 3\1/5\0 0 0 0 1/5\0/4\2 0 0 0 0 0 0 X3
|
|
|
|
//
|
|
|
|
|
|
|
|
// quick check: we must have a rising edge 0->1 and a falling edge 12->13
|
|
|
|
if (! (preamble[0] < preamble[1] && preamble[12] > preamble[13]) )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (preamble[1] > preamble[2] && // 1
|
|
|
|
preamble[2] < preamble[3] && preamble[3] > preamble[4] && // 3
|
|
|
|
preamble[8] < preamble[9] && preamble[9] > preamble[10] && // 9
|
|
|
|
preamble[10] < preamble[11]) { // 11-12
|
|
|
|
// peaks at 1,3,9,11-12: phase 3
|
|
|
|
high = (preamble[1] + preamble[3] + preamble[9] + preamble[11] + preamble[12]) / 4;
|
2015-01-21 14:32:17 +01:00
|
|
|
base_signal = preamble[1] + preamble[3] + preamble[9];
|
|
|
|
base_noise = preamble[5] + preamble[6] + preamble[7];
|
2015-01-20 00:50:25 +01:00
|
|
|
} else if (preamble[1] > preamble[2] && // 1
|
|
|
|
preamble[2] < preamble[3] && preamble[3] > preamble[4] && // 3
|
|
|
|
preamble[8] < preamble[9] && preamble[9] > preamble[10] && // 9
|
|
|
|
preamble[11] < preamble[12]) { // 12
|
|
|
|
// peaks at 1,3,9,12: phase 4
|
|
|
|
high = (preamble[1] + preamble[3] + preamble[9] + preamble[12]) / 4;
|
2015-01-21 14:32:17 +01:00
|
|
|
base_signal = preamble[1] + preamble[3] + preamble[9] + preamble[12];
|
|
|
|
base_noise = preamble[5] + preamble[6] + preamble[7] + preamble[8];
|
2015-01-20 00:50:25 +01:00
|
|
|
} else if (preamble[1] > preamble[2] && // 1
|
|
|
|
preamble[2] < preamble[3] && preamble[4] > preamble[5] && // 3-4
|
|
|
|
preamble[8] < preamble[9] && preamble[10] > preamble[11] && // 9-10
|
|
|
|
preamble[11] < preamble[12]) { // 12
|
|
|
|
// peaks at 1,3-4,9-10,12: phase 5
|
|
|
|
high = (preamble[1] + preamble[3] + preamble[4] + preamble[9] + preamble[10] + preamble[12]) / 4;
|
2015-01-21 14:32:17 +01:00
|
|
|
base_signal = preamble[1] + preamble[12];
|
|
|
|
base_noise = preamble[6] + preamble[7];
|
2015-01-20 00:50:25 +01:00
|
|
|
} else if (preamble[1] > preamble[2] && // 1
|
|
|
|
preamble[3] < preamble[4] && preamble[4] > preamble[5] && // 4
|
|
|
|
preamble[9] < preamble[10] && preamble[10] > preamble[11] && // 10
|
|
|
|
preamble[11] < preamble[12]) { // 12
|
|
|
|
// peaks at 1,4,10,12: phase 6
|
|
|
|
high = (preamble[1] + preamble[4] + preamble[10] + preamble[12]) / 4;
|
2015-01-21 14:32:17 +01:00
|
|
|
base_signal = preamble[1] + preamble[4] + preamble[10] + preamble[12];
|
|
|
|
base_noise = preamble[5] + preamble[6] + preamble[7] + preamble[8];
|
2015-01-20 00:50:25 +01:00
|
|
|
} else if (preamble[2] > preamble[3] && // 1-2
|
|
|
|
preamble[3] < preamble[4] && preamble[4] > preamble[5] && // 4
|
|
|
|
preamble[9] < preamble[10] && preamble[10] > preamble[11] && // 10
|
|
|
|
preamble[11] < preamble[12]) { // 12
|
|
|
|
// peaks at 1-2,4,10,12: phase 7
|
|
|
|
high = (preamble[1] + preamble[2] + preamble[4] + preamble[10] + preamble[12]) / 4;
|
2015-01-21 14:32:17 +01:00
|
|
|
base_signal = preamble[4] + preamble[10] + preamble[12];
|
|
|
|
base_noise = preamble[6] + preamble[7] + preamble[8];
|
2015-01-20 00:50:25 +01:00
|
|
|
} else {
|
|
|
|
// no suitable peaks
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check for enough signal
|
2015-01-21 14:32:17 +01:00
|
|
|
if (base_signal * 2 < 3 * base_noise) // about 3.5dB SNR
|
2015-01-20 00:50:25 +01:00
|
|
|
continue;
|
|
|
|
|
|
|
|
// Check that the "quiet" bits 6,7,15,16,17 are actually quiet
|
|
|
|
if (preamble[5] >= high ||
|
|
|
|
preamble[6] >= high ||
|
|
|
|
preamble[7] >= high ||
|
|
|
|
preamble[8] >= high ||
|
|
|
|
preamble[14] >= high ||
|
|
|
|
preamble[15] >= high ||
|
|
|
|
preamble[16] >= high ||
|
|
|
|
preamble[17] >= high ||
|
|
|
|
preamble[18] >= high) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2015-01-21 14:32:17 +01:00
|
|
|
if (Modes.phase_enhance) {
|
|
|
|
first_phase = 4;
|
|
|
|
last_phase = 8; // try all phases
|
|
|
|
} else {
|
|
|
|
// Crosscorrelate against the first few bits to find a likely phase offset
|
|
|
|
initial_phase = best_phase(&preamble[19]);
|
|
|
|
if (initial_phase < 0) {
|
|
|
|
continue; // nothing satisfactory
|
|
|
|
}
|
|
|
|
|
|
|
|
first_phase = last_phase = initial_phase; // try only the phase we think it is
|
2015-01-20 00:50:25 +01:00
|
|
|
}
|
|
|
|
|
2015-01-22 20:49:19 +01:00
|
|
|
Modes.stats_current.demod_preambles++;
|
|
|
|
bestmsg = NULL; bestscore = -2; bestphase = -1;
|
2015-01-21 14:32:17 +01:00
|
|
|
for (try_phase = first_phase; try_phase <= last_phase; ++try_phase) {
|
|
|
|
uint16_t *pPtr;
|
2015-01-21 20:10:07 +01:00
|
|
|
int phase, i, score, bytelen;
|
2015-01-21 14:32:17 +01:00
|
|
|
|
|
|
|
// Decode all the next 112 bits, regardless of the actual message
|
|
|
|
// size. We'll check the actual message type later
|
|
|
|
|
|
|
|
pPtr = &m[j+19] + (try_phase/5);
|
|
|
|
phase = try_phase % 5;
|
|
|
|
|
2015-01-21 20:03:51 +01:00
|
|
|
bytelen = MODES_LONG_MSG_BYTES;
|
|
|
|
for (i = 0; i < bytelen; ++i) {
|
|
|
|
uint8_t theByte = 0;
|
|
|
|
|
2015-01-21 14:32:17 +01:00
|
|
|
switch (phase) {
|
|
|
|
case 0:
|
2015-01-21 20:03:51 +01:00
|
|
|
theByte =
|
|
|
|
(slice_phase0(pPtr) > 0 ? 0x80 : 0) |
|
|
|
|
(slice_phase2(pPtr+2) > 0 ? 0x40 : 0) |
|
|
|
|
(slice_phase4(pPtr+4) > 0 ? 0x20 : 0) |
|
|
|
|
(slice_phase1(pPtr+7) > 0 ? 0x10 : 0) |
|
|
|
|
(slice_phase3(pPtr+9) > 0 ? 0x08 : 0) |
|
|
|
|
(slice_phase0(pPtr+12) > 0 ? 0x04 : 0) |
|
|
|
|
(slice_phase2(pPtr+14) > 0 ? 0x02 : 0) |
|
|
|
|
(slice_phase4(pPtr+16) > 0 ? 0x01 : 0);
|
|
|
|
|
|
|
|
|
|
|
|
phase = 1;
|
|
|
|
pPtr += 19;
|
2015-01-21 14:32:17 +01:00
|
|
|
break;
|
|
|
|
|
|
|
|
case 1:
|
2015-01-21 20:03:51 +01:00
|
|
|
theByte =
|
|
|
|
(slice_phase1(pPtr) > 0 ? 0x80 : 0) |
|
|
|
|
(slice_phase3(pPtr+2) > 0 ? 0x40 : 0) |
|
|
|
|
(slice_phase0(pPtr+5) > 0 ? 0x20 : 0) |
|
|
|
|
(slice_phase2(pPtr+7) > 0 ? 0x10 : 0) |
|
|
|
|
(slice_phase4(pPtr+9) > 0 ? 0x08 : 0) |
|
|
|
|
(slice_phase1(pPtr+12) > 0 ? 0x04 : 0) |
|
|
|
|
(slice_phase3(pPtr+14) > 0 ? 0x02 : 0) |
|
|
|
|
(slice_phase0(pPtr+17) > 0 ? 0x01 : 0);
|
|
|
|
|
|
|
|
phase = 2;
|
|
|
|
pPtr += 19;
|
2015-01-21 14:32:17 +01:00
|
|
|
break;
|
|
|
|
|
|
|
|
case 2:
|
2015-01-21 20:03:51 +01:00
|
|
|
theByte =
|
|
|
|
(slice_phase2(pPtr) > 0 ? 0x80 : 0) |
|
|
|
|
(slice_phase4(pPtr+2) > 0 ? 0x40 : 0) |
|
|
|
|
(slice_phase1(pPtr+5) > 0 ? 0x20 : 0) |
|
|
|
|
(slice_phase3(pPtr+7) > 0 ? 0x10 : 0) |
|
|
|
|
(slice_phase0(pPtr+10) > 0 ? 0x08 : 0) |
|
|
|
|
(slice_phase2(pPtr+12) > 0 ? 0x04 : 0) |
|
|
|
|
(slice_phase4(pPtr+14) > 0 ? 0x02 : 0) |
|
|
|
|
(slice_phase1(pPtr+17) > 0 ? 0x01 : 0);
|
|
|
|
|
|
|
|
phase = 3;
|
|
|
|
pPtr += 19;
|
2015-01-21 14:32:17 +01:00
|
|
|
break;
|
|
|
|
|
|
|
|
case 3:
|
2015-01-21 20:03:51 +01:00
|
|
|
theByte =
|
|
|
|
(slice_phase3(pPtr) > 0 ? 0x80 : 0) |
|
|
|
|
(slice_phase0(pPtr+3) > 0 ? 0x40 : 0) |
|
|
|
|
(slice_phase2(pPtr+5) > 0 ? 0x20 : 0) |
|
|
|
|
(slice_phase4(pPtr+7) > 0 ? 0x10 : 0) |
|
|
|
|
(slice_phase1(pPtr+10) > 0 ? 0x08 : 0) |
|
|
|
|
(slice_phase3(pPtr+12) > 0 ? 0x04 : 0) |
|
|
|
|
(slice_phase0(pPtr+15) > 0 ? 0x02 : 0) |
|
|
|
|
(slice_phase2(pPtr+17) > 0 ? 0x01 : 0);
|
|
|
|
|
|
|
|
phase = 4;
|
|
|
|
pPtr += 19;
|
2015-01-21 14:32:17 +01:00
|
|
|
break;
|
|
|
|
|
|
|
|
case 4:
|
2015-01-21 20:03:51 +01:00
|
|
|
theByte =
|
|
|
|
(slice_phase4(pPtr) > 0 ? 0x80 : 0) |
|
|
|
|
(slice_phase1(pPtr+3) > 0 ? 0x40 : 0) |
|
|
|
|
(slice_phase3(pPtr+5) > 0 ? 0x20 : 0) |
|
|
|
|
(slice_phase0(pPtr+8) > 0 ? 0x10 : 0) |
|
|
|
|
(slice_phase2(pPtr+10) > 0 ? 0x08 : 0) |
|
|
|
|
(slice_phase4(pPtr+12) > 0 ? 0x04 : 0) |
|
|
|
|
(slice_phase1(pPtr+15) > 0 ? 0x02 : 0) |
|
|
|
|
(slice_phase3(pPtr+17) > 0 ? 0x01 : 0);
|
|
|
|
|
|
|
|
phase = 0;
|
|
|
|
pPtr += 20;
|
2015-01-21 14:32:17 +01:00
|
|
|
break;
|
2015-01-20 00:50:25 +01:00
|
|
|
}
|
|
|
|
|
2015-01-21 20:03:51 +01:00
|
|
|
msg[i] = theByte;
|
|
|
|
if (i == 0) {
|
|
|
|
switch (msg[0] >> 3) {
|
|
|
|
case 0: case 4: case 5: case 11:
|
2015-01-23 00:34:47 +01:00
|
|
|
bytelen = MODES_SHORT_MSG_BYTES; break;
|
2015-01-21 20:03:51 +01:00
|
|
|
|
|
|
|
case 16: case 17: case 18: case 20: case 21: case 24:
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
bytelen = 1; // unknown DF, give up immediately
|
|
|
|
break;
|
|
|
|
}
|
2015-01-20 00:50:25 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-01-21 14:32:17 +01:00
|
|
|
// Score the mode S message and see if it's any good.
|
2015-01-21 20:03:51 +01:00
|
|
|
score = scoreModesMessage(msg, i*8);
|
2015-01-21 14:32:17 +01:00
|
|
|
if (score > bestscore) {
|
|
|
|
// new high score!
|
|
|
|
bestmsg = msg;
|
|
|
|
bestscore = score;
|
|
|
|
bestphase = try_phase;
|
|
|
|
|
|
|
|
// swap to using the other buffer so we don't clobber our demodulated data
|
|
|
|
// (if we find a better result then we'll swap back, but that's OK because
|
|
|
|
// we no longer need this copy if we found a better one)
|
|
|
|
msg = (msg == msg1) ? msg2 : msg1;
|
2015-01-20 00:50:25 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-01-21 14:32:17 +01:00
|
|
|
// Do we have a candidate?
|
2015-01-22 20:49:19 +01:00
|
|
|
if (bestscore < 0) {
|
|
|
|
if (bestscore == -1)
|
|
|
|
Modes.stats_current.demod_rejected_unknown_icao++;
|
|
|
|
else
|
|
|
|
Modes.stats_current.demod_rejected_bad++;
|
2015-01-21 14:32:17 +01:00
|
|
|
continue; // nope.
|
2015-01-20 00:50:25 +01:00
|
|
|
}
|
|
|
|
|
2015-01-21 14:32:17 +01:00
|
|
|
msglen = modesMessageLenByType(bestmsg[0] >> 3);
|
2015-01-20 00:50:25 +01:00
|
|
|
|
2015-01-21 14:32:17 +01:00
|
|
|
// Set initial mm structure details
|
|
|
|
mm.timestampMsg = Modes.timestampBlk + (j*5) + bestphase;
|
|
|
|
mm.score = bestscore;
|
|
|
|
mm.bFlags = mm.correctedbits = 0;
|
2015-01-20 00:50:25 +01:00
|
|
|
|
2015-01-22 02:01:39 +01:00
|
|
|
// measure signal power
|
|
|
|
{
|
|
|
|
uint64_t signal_power_sum = 0;
|
|
|
|
double signal_power;
|
|
|
|
int signal_len = msglen*12/5 + 1;
|
|
|
|
int k;
|
|
|
|
|
|
|
|
for (k = 0; k < signal_len; ++k) {
|
|
|
|
uint64_t s = TRUE_AMPLITUDE(m[j+19+k]);
|
|
|
|
signal_power_sum += s * s;
|
|
|
|
}
|
|
|
|
|
|
|
|
mm.signalLevel = signal_power = signal_power_sum / MAX_POWER / signal_len;
|
|
|
|
Modes.stats_current.signal_power_sum += signal_power;
|
|
|
|
Modes.stats_current.signal_power_count ++;
|
|
|
|
|
|
|
|
if (signal_power > Modes.stats_current.peak_signal_power)
|
|
|
|
Modes.stats_current.peak_signal_power = signal_power;
|
|
|
|
if (signal_power > 0.50119)
|
|
|
|
Modes.stats_current.strong_signal_count++; // signal power above -3dBFS
|
|
|
|
}
|
|
|
|
|
2015-01-21 14:32:17 +01:00
|
|
|
// Decode the received message
|
2015-01-22 20:49:19 +01:00
|
|
|
{
|
|
|
|
int result = decodeModesMessage(&mm, bestmsg);
|
|
|
|
if (result < 0) {
|
|
|
|
if (result == -1)
|
|
|
|
Modes.stats_current.demod_rejected_unknown_icao++;
|
|
|
|
else
|
|
|
|
Modes.stats_current.demod_rejected_bad++;
|
|
|
|
continue;
|
2015-01-21 14:32:17 +01:00
|
|
|
} else {
|
2015-01-22 20:49:19 +01:00
|
|
|
Modes.stats_current.demod_accepted[mm.correctedbits]++;
|
2015-01-20 00:50:25 +01:00
|
|
|
}
|
|
|
|
}
|
2015-01-21 14:32:17 +01:00
|
|
|
|
2015-01-22 20:49:19 +01:00
|
|
|
|
2015-01-21 14:32:17 +01:00
|
|
|
// Skip over the message:
|
|
|
|
// (we actually skip to 8 bits before the end of the message,
|
|
|
|
// because we can often decode two messages that *almost* collide,
|
|
|
|
// where the preamble of the second message clobbered the last
|
|
|
|
// few bits of the first message, but the message bits didn't
|
|
|
|
// overlap)
|
2015-01-23 00:38:21 +01:00
|
|
|
#ifdef MEASURE_NOISE
|
2015-01-22 02:01:39 +01:00
|
|
|
last_message_end = j + (8 + msglen)*12/5;
|
2015-01-23 00:38:21 +01:00
|
|
|
#endif
|
2015-01-21 14:32:17 +01:00
|
|
|
j += (8 + msglen - 8)*12/5 - 1;
|
|
|
|
|
|
|
|
// Pass data to the next layer
|
|
|
|
useModesMessage(&mm);
|
2015-01-20 00:50:25 +01:00
|
|
|
}
|
2015-01-22 02:01:39 +01:00
|
|
|
|
2015-01-23 00:38:21 +01:00
|
|
|
#ifdef MEASURE_NOISE
|
2015-01-22 02:01:39 +01:00
|
|
|
Modes.stats_current.noise_power_sum += (noise_power_sum / MAX_POWER / noise_power_count);
|
|
|
|
Modes.stats_current.noise_power_count ++;
|
2015-01-23 00:38:21 +01:00
|
|
|
#endif
|
2015-01-20 00:50:25 +01:00
|
|
|
}
|
|
|
|
|